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Although the theoretical foundations of the modern field of cultural evolution have
been in place for over 50 y, laboratory experiments specifically designed to test cultural
evolutionary theory have only existed for the last two decades. Here, we review
the main experimental designs used in the field of cultural evolution, as well as
major findings related to the generation of cultural variation, content- and model-
based biases, cumulative cultural evolution, and nonhuman culture. We then identify
methodological advances that demonstrate the iterative improvement of cultural
evolution experimental methods. Finally, we focus on one common critique of cultural
evolution experiments, the appropriate individual learning control condition needed
to demonstrate cumulative culture, and present an original experimental investigation
relevant to this critique. Participants completed a combinatorial innovation task
allowing for cumulative improvement over time in one of four commonly used
experimental designs/conditions: social learners in chains, social learners in groups,
individual learners experiencing an extended session lasting the same accumulated
time as an entire chain or group, and individual learners experiencing repeated sessions
adding up to the same total time. We found that repeated individual learning resulted
in superior performance to any other condition. We discuss these findings in light of the
relevance of the specific criticism of previous experimental studies that purport to have
demonstrated cumulative culture. We also use our findings to discuss the broad trade-
offs that participants face when learning individually and socially in different contexts,
including variable acquisition costs, redundancy of effort in groups, and cognitive and
motivational fatigue.

cultural evolution | cumulative culture | laboratory experiments | social learning

Fifty years ago, Cavalli-Sforza and Feldman (1, 2) laid the theoretical foundations for the
modern field of cultural evolution, in which cultural change is viewed as an evolutionary
process (3–5). In these and subsequent works (6), Cavalli-Sforza and Feldman borrowed
and adapted the theoretical tools of population genetics to formalize the processes that
comprise and shape cultural evolution: cultural traits are transmitted via various pathways
(e.g. vertical, oblique or horizontal), are subject to cultural selection where some traits are
more likely to be learned and passed on than others, and new cultural variation emerges
via cultural mutation and migration.

The first explicit empirical tests of this body of theory were ethnographic studies
mapping the pathways of transmission in small-scale communities (7). Subsequent key
developments included the comparative analysis of cross-cultural variation in languages
and behavioral practices (8, 9) and studies of nonhuman cultural transmission and
variation (10, 11). It was not until the early 2000s that lab experiments (12–15) were
used to explicitly test the assumptions and predictions of the cultural evolutionary theory
laid out by Cavalli-Sforza and Feldman and others.

Experiments provide an important link between theoretical models and analyses of
historical, linguistic, ethnographic, and other real-world data (16). Experiments maintain
some of the control and simplicity of theoretical models, allowing us to manipulate
or control variables, randomly assign participants to different conditions, and directly
observe behavior, features which are seldom possible for observational or historical
methods. Yet unlike models, experiments involve actual human or nonhuman behavior
and cognition, rather than a modeler’s intuitions about how individuals behave and
think. While experiments necessarily maintain a degree of artificiality and simplicity
compared to the real world, when used in conjunction with theoretical models and real-
world data, they provide a key element of a broad science of cultural evolution (17), just
as experiments have played a vital role in evolutionary biology, from Darwin, Mendel
and Morgan to modern experimental studies of microorganism evolution (18).
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Central to any evolutionary process is inheritance, which in
cultural evolution takes the form of social learning. Hence, experi-
mental studies of cultural evolution typically involve participants
learning from at least one other participant. Several specific
designs have emerged (16). Transmission chain designs involve a
written text, task solution, or manufactured artifact being passed
along a linear chain of participants, with each participant able
to read or see the previous participant’s output. Group-based
designs involve groups of participants repeatedly making choices
or attempting to solve problems, with participants permitted to
see other group members’ choices or solutions. Sometimes group
membership is fixed, sometimes group members are periodically
replaced, the latter simulating population turnover or migration.

Key Findings

Key findings from the last two decades of cultural evolution
experiments include the following:

Cultural Mutation. Early cultural evolution models made the
simplifying assumption that new cultural variation emerges via
random mutation, analogous to random genetic mutation (6).
Subsequent work added greater psychological realism to these
models. For example, the accumulated copying error (ACE)
model (19, 20) assumes a chain of artifact manufacturers (e.g.
handaxe knappers) each of whom tries to exactly copy the size
of the artifact produced by the previous individual in the chain.
Evidence from psychophysics suggests that size differences of less
than 3% (the “Weber fraction”) are imperceptible to human
visual systems. Hence the ACE model assumes that each person
in the chain produces an artifact that deviates randomly in
size somewhere between ±3% of the previous artifact. Across
multiple independent chains, this should result in no change in
the mean size of the artifact and an increase in the variance, as
artifacts in some chains randomly get larger and other chains
randomly smaller. To empirically test this model, Kempe et al.
(21) had participants in multiple independent chains resize
handaxe images to match as accurately as possible the size of
the previous participant’s handaxe. As predicted, the variance in
handaxe size increased over time consistent with a Weber fraction
of 3.43%, similar to the previously assumed value. A subsequent
study went beyond simply resizing images of artifacts and had
participants in chains actually make clay figurines (23). Here, the
Weber fraction was± 8% and± 15% for experts and nonexperts
respectively. These larger values likely incorporate the added
copying error introduced via the manufacturing process, beyond
simply errors in perception. Moreover, the smaller copying error
for experts indicates important individual differences in cultural
mutation due to experience, rather than the models’ assumption
of human universality.

Content Biases. One form of cultural selection (6) entails certain
kinds of information being more likely to be remembered and
transmitted than other kinds, often known as content biases
(3). Building on classic social psychological methods (22),
transmission chain studies have used written stories to reveal
content biases that favor the transmission of negative over positive
information (23, 24), social over nonsocial information (25, 26),
and stereotype-consistent over stereotype-inconsistent informa-
tion (27). Interestingly, many of these biases are also found
when large language models (LLMs) are asked to summarize
the same material, rather than actual human participants (28).
Given that LLMs are trained on human-generated material from

the internet, this suggests that the content biases observed in
the confines of the laboratory are also evident in real-world
human culture. A similar line of studies has examined the cultural
transmission of languages (29) and cognitive representations (30),
showing that content (or inductive) biases gradually alter random
representations to reflect structural regularities favored by human
cognition.

Model-Based Biases. In contrast to content biases, model-based
biases describe cultural change in response to who is copied,
rather than what. Group-based experiments have shown that
participants engage in conformity, the disproportionate copying
of the most common cultural traits exhibited in the group
(31–33), albeit not all participants (34) and not as much as
they should in order to maximize payoffs (31). More recent
studies have found that conformity is primarily used in response
to spatial environmental variation, i.e., when participants move
to a new group containing others who have already acquired
locally adaptive behavior, rather than temporal environmental
variation, i.e., when everyone experiences an environmental shift
such that the majority cultural trait is unlikely to yet be adaptive
(35), as predicted by theoretical models (36). Other experiments
have explored prestige bias, the preferential copying of high-
status individuals who are frequently copied and deferred to by
others. As predicted, participants engage in prestige bias only
when prestige constitutes a reliable cue of demonstrator success
rather than a random cue unrelated to payoffs, and only when
direct success information about demonstrators is unavailable
(37). Furthermore, participants are sensitive to the domain-
specificity of prestige cues, preferring to learn from demonstrators
who acquired prestige in the same knowledge domain as the trait
being copied (38).

Cumulative Culture. Much attention has focused on why and
how human culture is distinctively cumulative, in the sense that
beneficial modifications are preserved, recombined, and accu-
mulated over successive generations to generate technologies and
practices that could not have been created by a single individual
alone (39). Several studies have sought to simulate cumulative
cultural evolution in the lab, with chains of participants modify-
ing and transmitting artifacts like paper airplanes, hand-axes, and
baskets (40–42) or solutions to challenging problems (43, 44),
identifying the conditions under which artifact performance
or solution effectiveness improves over successive experimental
“generations.” Studies have shown that cumulative culture is
more likely with higher-fidelity transmission mechanisms such as
teaching or language (41, 42), and in larger or partially connected
groups (45, 46), supporting model predictions (47, 48). Other
studies have shown that cumulative culture can occur in the
absence of accurate causal understanding of why the transmitted
trait improves performance (43); all that is needed is selective
copying of successful solutions (44).

Nonhuman Culture. Experiments have played a central role in
demonstrating the existence and form of cultural evolution
in nonhuman species, particularly in the face of skepticism
that culture exists in other species. Transmission chain studies
demonstrate that chimpanzees are capable of transmitting task
solutions with enough fidelity to maintain persistent cultural
traditions (49), supporting the cultural basis of such traditions
observed in the wild (11), as well as content biases in birdsong
(50). Other studies have revealed specific model-based biases such
as conformity in birds (51) and payoff bias in monkeys (52).
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There is also evidence for some form of cumulative culture in
pigeons (53), using identical transmission-replacement methods
used in humans (40). While some of these studies use captive
animals in the lab, many employ field experiments to study
animals in the wild, thus achieving greater ecological validity.

Methodological Advances

The past two decades have also seen advances in experimental
methods used to study cultural evolution. Here, we highlight
three such advances.

Transmission Chain Modifications. Linear transmission chain
designs have been criticized for their lack of realism, given that
real-world transmission often involves repeatedly learning from
multiple demonstrators, rather than a single learning episode
from the single preceding individual in the chain (54). While
undoubtedly true, the value of experiments, like models, often
lies in their simplicity; abstracting away from all other real-world
complexities is often necessary to better understand the effect of
specific variables. Nevertheless, transmission chain designs have
been adapted to explore the generality of existing findings. For
example, one study explicitly compared learning twice from the
same demonstrator versus learning once each from two different
demonstrators (55), finding better transmission in the latter case.
Other studies have probed at which stage in the transmission
process content biases operate: the encoding/attention phase, the
memory/recall phase, or the choice-to-transmit phase (56). These
are valuable extensions of early work using only linear, one-to-one
transmission chains.

Generative Statistical Models. Unlike in psychology, cultural
evolution experiments benefit from an established body of
formal modeling going back 50 y, as noted above. Some of the
earliest cultural evolution experiments took advantage of this
formal foundation to directly fit participant data to existing
models of cultural evolutionary processes such as conformity
(31, 34, 57). Rather than generic statistical models such as linear
regression, these generative or theory-driven models (58) can
directly estimate each participant’s tendency to, say, conform to
a majority, and how this tendency is affected by environmental
change. There is much scope for tighter links between formal
theory and experimental methods.

Large-Scale Online Experimentation. In the last two decades,
the internet has made possible experiments of vastly increased
scale and complexity compared to traditional face-to-face labo-
ratory experiments. This development is not unique to cultural
evolution, but given the field’s focus on social learning within
and between groups of individuals and cumulative change over
time, online experimentation platforms are particularly useful
here. Recent online experiments feature sample sizes in the
thousands (44, 59) with participants often dynamically moved
across groups depending on performance, features which are
difficult or impossible to achieve in the lab.

Empirical Case Study: Identifying the
Appropriate Individual Learning Control
Condition in Cultural Evolution Experiments

Notwithstanding the above empirical and methodological
advances, there remain important unresolved issues in the

experimental study of cultural evolution. One such issue relates
to the suitability of individual learning control conditions in
experiments that purport to simulate and investigate cumulative
cultural evolution in the lab. In the rest of this paper, we examine
this critique in more detail, and report an experimental study
that compares the performance of individual and social learners
across various experimental designs—transmission chains and
static groups—that we discussed above. Our aim is not simply
to support or reject a particular choice of control condition,
but rather to systematically explore the various trade-offs that
participants in different learning situations experience. We hope
that this will provide a better foundation for future researchers’
choices of experimental designs and the conditions within them,
and allow useful reevaluation of past experimental results.

As noted above, cultural evolution experiments have been
used to demonstrate and test hypotheses regarding cumulative
cultural evolution. One criterion used by experimenters to deter-
mine whether the outcome of a transmission chain experiment
constitutes cumulative culture is whether gradual improvement
has occurred across generations (40, 42, 43). However, this
process-focused criterion might seem a relatively low bar for
demonstrating cumulative culture. Some have argued that, in
addition to demonstrating gradual improvement, cumulative
cultural evolution experiments should demonstrate that the
solution has improved beyond what an individual could generate
on their own (60). Consequently, some experiments have
implemented individual learning control conditions comprising
lone participants having the same amount of time to complete
the same task as participants in the group or chain (61, 62).
Experiments that have used this product-focused criterion show
that, under some conditions, participants in groups or chains
reach performances higher than that of the best individual
learner (62). However, this approach has also been criticized
for failing to provide individual learners with appropriately
comparable learning time as an entire group or chain (63).
A proper comparison, it is argued, would include a baseline
individual learning condition in which single participants are
given the same amount of time as the entire group or chain,
e.g. for a transmission chain of 4 participants each given 25 min,
individual learners would get 100 min rather than 25 min. This
has been implemented in only a handful of experiments (41, 53).

While informative, we do not think that relying on a product-
focused criterion is quite so straightforward, nor that an extended
individual learning control condition is fully justified. Indeed, the
justification for individual learning control conditions is often to
test the equivalent claim regarding real-world cultural evolution:
that the end product of cumulative culture exceeds what one
isolated individual could achieve alone in a single lifetime with
no cultural influence (64). Yet learning times in experiments are
far shorter than individual lifespans, and such a claim is surely
untestable using experimental methods (65).

More substantively, we are not convinced that simply provid-
ing individual learners with the same amount of accumulated
time as a group or chain is necessarily comparable to that group
or chain, for several reasons. First, participants often get better
with practice, albeit with decreasing rates of improvement over
trials/time, such that individual learners may quickly get more
efficient at completing the task than social learners. This may
result in relatively more time to refine their solution and more
opportunities to reach higher payoffs. Second, there are trade-
offs that social learners often face between learning socially
and implementing their solution. For instance, in one of the
few experiments to implement an extended individual learning
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condition, social learners had to simultaneously learn how to
make an artifact from a demonstrator and produce their own
(41). Consequently, social learners had less time than individual
learners to build their artifact and could try out fewer alternative
designs. Third, social learners experience information loss to a
greater extent than individual learners. In most experiments,
transmitted solutions represent a subset of what has been tried
out by another participant in the chain or group. This means that
the loss of important knowledge will systematically occur in social
conditions, whereas individual learners’ knowledge about the set
of solutions that they have tried out will be limited only by their
own memory capacity. Fourth, motivation might reduce over
time. Assuming a chain of 10 social learners, individual learners
would need to spend 10 times longer solving the task than each
social learner. It is hard to believe that participants’ motivation
would remain comparable over such varying time periods. Fifth,
in the absence of coordinated division of labor, social learners in
groups might invest time solving the same problems (“reinventing
the wheel”), while individual learners given the same amount of
accumulated time will tend to tackle novel problems. This means
that, compared to individual learners, social learners in groups
will waste time by engaging in redundant work.

Given these uncertainties over the appropriateness of individ-
ual learning control conditions, we conducted an experimental
study that compared the performance of learners across the main
experimental designs that are used in the literature on cumulative
culture. 570 participants were randomly assigned to one of four
experimental designs: individual learners who experienced a sin-
gle continuous session (hereafter “extended individual learners;”
n = 41), individual learners who experienced four successive
sessions on separate days (hereafter “repeated individual learners;”
n = 59, of which 6 dropped out between sessions), social learners
placed in linear chains of four generations (hereafter “chains;” n
= 212; 53 distinct chains) and social learners in static groups of
either two or four who could continuously learn from other group
members (hereafter “groups;” n = 106 or 53 distinct groups of
two; and n = 152 or 38 distinct groups of four, respectively).
Experimental sessions were 25 min long for all participants
except for extended individual learners, who had a single
session of 50 min (Fig. 1). The comparison between repeated
individual learners and chains allows us to investigate the loss of
skill/knowledge and the cost of learning socially. The comparison
between chains and groups allows us to investigate the costs of
producing redundant work. Finally, the comparison between
repeated and extended individual learners allows us to investigate
the effect of session duration on individuals’ motivation.

The experiment used the totem task from ref. 62, a combina-
torial task in which participants produced virtual “totem poles”
(hereafter “totems”). The task simulates real-world innovation in
which the production of complex artifacts (here, virtual “totem
poles”) depends on the discovery of high-level innovations (e.g.,
axes), whose discovery is in turn contingent on the discovery
of lower-level innovations (e.g., stone tools), with both low-
and high-level innovations resulting from a specific production
process. Once a tool is discovered, its “recipe,” i.e. the items that
must be combined to create it, is displayed in an “innovation
record.” Participants can review their own past discoveries by
clicking on a tool to see its recipe. Participants’ innovation records
also allow the sharing of information within groups and across
chains/sessions. Observing an innovation record provides the
recipes for creating the tools, but not the tools themselves. To
use these tools in further combinations, the tools, including all of
the constituent parts, must first be reproduced by the participant
observing the innovation record.

Social learners in groups (4 x 25 mins)Extended individual learners (1 x 50 mins)

Reapeated individual learners (4 x 25 mins)

Social learners in chains (4 x 25 mins)

Fig. 1. Overview of the experimental conditions. Extended individual learn-
ers experienced a single continuous session of 50 min. Repeated individual
learners experienced four successive sessions of 25 min on separate days.
Social learners experienced a single session of 25 min and were placed in
either linear chains of four generations or static groups of either two or four.
Repeated individual learners inherited their own innovation record while
social learners in chains inherited the record of someone else. Social learners
in groups could continuously learn from their other group members.

Repeated individual learners and social learners in chains
experienced the same conditions, each starting a new session by
inheriting the innovation record produced during the previous
session. The only difference is that repeated individual learners
inherited their own innovation record while social learners in
chains inherited the record of someone else. Participants in groups
could observe the innovation record of any other member of their
group at any point during the session.

Results

Initial analyses confirm that results from both chains and groups
replicate well-established previous findings: the score of social
learners increased both across generations within chains and with
group size for groups. The analyses below control for accumulated
time, to address the criticism that individual control conditions
should provide individual learners with the same amount of
accumulated time than social learners.

Score Across Treatments When Controlling for Accumulated
Time. In our experiment, participants learned individually for
25 min in 3 treatments (Fig. 2). Analyses confirm that scores do
not differ between treatments up to this point (extended versus
repeated individual learners, 95% CI: (−61.7; 16.6), mean =
−23.0; repeated individual learners versus learners in chains, 95%
CI: (−26.4; 69.5), mean = 21.4). After 50 min of accumulated
time, scores reached by extended individual learners, learners
in chains, and learners in groups are comparable (e.g. extended
individual learners versus learners in groups, 95% CI: (−91.7;
−39.5), mean = −25.6). However, repeated individual learners
reliably outperform learners in any other treatment (e.g. contrast
with learners in groups, 95% CI: (35.6; 215.6), mean = 124.4).
The same pattern is observed after 100 min of accumulated time,
with learners in chains reaching comparable scores as learners in
groups (generation 95% CI: (−45.7; 233.0), mean = 90.0), and
repeated individual learners reliably outperforming learners from
any other treatment (e.g. contrast with learners in chains 95%
CI: (146.6; 423.4), mean = 285.1).

Repeated Individual Learners Outperform Learners in Chains.
To better understand these trends, we ran additional analyses
investigating the various trade-offs that learners face in different
experimental conditions. We start by further analyzing data
from chains compared to repeated individual learners. As noted
above, it is sometimes argued that the latter provides the most
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0

200

400

600

800

Extended
individual learners

(1 x 50mn)

Repeated
individual learners

(4 x 25mn)

Social learners
in chains

(4 x 25mn)

Social learners
in groups

(2 or 4 during 25mn)
Treatment

Sc
or

e
25mn 50mn 75mn 100mn

Fig. 2. Score over time across the four experimental conditions. Gray bars
show the score achieved by participants all of whom learned individually for
25 min. Scores do not differ between conditions until this point. Repeated
individual learners who took part in multiple sessions reliably outperform
participants from any other treatment after both 50 min (light blue bars) and
100 min (dark blue bars) of accumulated time. Experimental sessions were
25 min long in all treatments except for extended individual learners who took
part in 50-min long sessions. The dashed line illustrates their performance
after 25 min for comparison purposes. Error bars show s.e.m.

direct nonsocial control condition for the former. We found that
repeated individual learners greatly outperform learners in chains.
To understand why, we reconstructed learners’ scores over time,
providing insights into how learners deal with the information
received from the previous session (Fig. 3). Unsurprisingly, the
scores of individual and social learners follow very similar trends
during the first 25-min session. However, repeated individual
learners start outperforming social learners in chains from the
second session onward.

Notably, it takes repeated individual learners less time than
social learners in chains to reach a score comparable to the one
reached at the end of the previous session. This is surprising
given that, due to their higher scores, repeated individual learners
inherit more items than social learners in chains, and more
items should require more time to reconstruct (Fig. 4). Analyses
of the number of items inherited per generation indicate that
this number increases across generation among social learners
(generation 95% CI: (1.81; 2.46), mean = 2.13) but does so faster
among individual learners (generation × individual learning
95% CI: (0.40; 1.30), mean = 0.85). Yet, the time it takes
participants to reproduce the inherited items increases across gen-
erations among social learners (generation 95% CI: (1.14; 2.06),

0

200

400

600

800

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Cumulated time

Sc
or

e

Repeated individual learners Social learners in chains

Fig. 3. Score over time among repeated individual learners and social
learners in chains. The score of individual and social learners follows a
similar trend during the first 25-min session. However, repeated individual
learners start outperforming social learners in chains from the second
session onward. Vertical lines show the end/beginning of the 25-min sessions.
Error bars show s.e.m.

Repeated individual learners Social learners in chains

2 3 4 2 3 4
0

5

10

15

Session or Generation

Nu
m

be
r o

f i
te

m
s

Fig. 4. Number of items inherited by repeated individual learners and social
learners in chains. Repeated individual learners inherit more items than social
learners in chains, reflecting the better overall performance of the former.
Error bars show s.e.m.

mean = 1.61) but not among individual learners (generation
95% CI: (−0.67; 0.50), mean = −0.09; see Fig. 5).

This means that, even though they had more items to
reproduce, repeated individual learners are faster than social
learners in chains at reproducing what has been discovered before.
After 3 sessions, repeated individual learners spend an average of
3.2 min reproducing inherited items leaving them 87% of the
session to innovate further. In comparison, social learners spend
an average of 8.7 min reproducing inherited items leaving them
only 65% of the session duration to innovate further.

Social Learners in Chains versus Social Learners in Groups.
Groups are an alternative way to organize social learners in
cumulative culture experiments. Our results show that repeated
individual learners greatly outperform social learners in groups
when controlling for accumulated time (Fig. 2). This is likely
to result, at least partly, from the benefits of the accumulated
experience of individual learners documented above. However,
additional effects may play a role in the respective performance
of participants in groups versus chains. Hence we now compare
groups with chains, allowing us to consider only learners who are
naïve at the beginning of their experimental session (Fig. 1).

Results show that groups perform slightly better than chains
after 50 min of accumulated time and slightly worse after 100 min
of accumulated time, although none of these differences are
reliable (Fig. 2). To further understand this pattern, we analyzed
the cost of social learning in both treatments. Compared to
social learners in chains who can focus on learning socially at

Repeated individual learners Social learners in chains

2 3 4 2 3 4
0.0

2.5

5.0

7.5

Session or Generation

Am
on

t o
f t

im
e

Fig. 5. The time it takes participants to reproduce the inherited items
increases across generations among social learners but not among repeated
individual learners. Error bars show s.e.m.
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the beginning of the experimental session, social learners in
groups must alternate between bouts of individual and social
learning. Consequently, we used the number of times participants
attended to another participant’s record as a proxy for the cost
of social learning. As shown above, using a different metric,
participants who are later in a transmission chain inherit more
items, meaning that they must attend to their demonstrator
more often (Fig. 6). Analyses confirm this with fourth-generation
social learners in chains observing their demonstrator more often
than second-generation social learners in chains (contrast 95%
CI: (0.91; 8.83), mean = 4.76). A similar effect is observed among
social learners in groups who tend to have more opportunities
to learn from others as group size increases (contrast 95%
CI: (14.3; 21.2), mean = 17.7). However, compared to social
learners in chains who attend to a single demonstrator whatever
generation they belong to, social learners in groups must attend
to more demonstrators as group size increases. Comparison
between chains and groups indicates that the cost of monitoring
demonstrators is comparable between second-generation learners
in chains and learners in groups-of-2 (contrast 95% CI: (−2.44;
4.66), mean = 1.07), while it is reliably lower for fourth-
generation learners in chains compared to learners in groups-of-4
(contrast 95% CI: (−18.2; −9.9), mean = −14.0). This means
that, as the number of participants involved increases, the cost of
social learning scales up faster in groups than in chains.

Another limitation of being part of a group is that group
members will spend time solving the same problems, while
learners in chains will tend to tackle novel problems. Hence
participants in groups should produce more redundant work
than participants in chains, especially as group size increases.
To test this, we compared individuals’ average probability of
producing a combination that has not been produced before by
any other member of their chain or group (Fig. 7). Within groups,
this probability reliably decreases from 0.45 for participants in
groups-of-2 to 0.34 for participants in groups-of-4 (contrast 95%
CI: (−0.12; −0.08), mean = −0.10). Comparisons between
chains and groups indicate the probability of producing a com-
bination that is novel is comparable between learners in groups-
of-2 and second-generation learners in chains (0.45 and 0.46,
respectively; contrast 95% CI: (−0.04; 0.01), mean = −0.02).
However, this probability is reliably lower among learners in
groups-of-4 compared to fourth-generation learners in chains
(0.34 and 0.39, respectively; contrast 95% CI: (−0.07; −0.02),
mean = −0.05).

Social learners in chains Social learners in groups

2nd Generation 4th Generation Groups of 2 Groups of 4
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Fig. 6. Number of monitoring events among social learners in chains and
groups. The number of times participants attended to the record of another
individual increases with both generation and group size. Comparisons
between chains and groups indicate that this number is comparable between
learners in groups-of-2 and second-generation learners in chains. However,
it is reliably higher among learners in groups-of-4 compared to fourth-
generation learners in chains. Error bars show s.e.m.
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Fig. 7. Probability of producing a combination that has not been produced
before. Individuals’ mean probability of producing a combination that has
not been produced before by any other member of their chain or group
decreases with both generation and group size. Comparisons between chains
and groups indicate that this probability is comparable between learners
in groups-of-2 and second-generation learners in chains, but reliably lower
among learners in groups-of-4 compared to fourth-generation learners in
chains.

Individual Learners Perform Better When Learning Time is
Distributed over Multiple Sessions. Finally, we examine the
difference between extended individual learners who took part
in a single 50-min session and repeated individual learners who
took part in two 25-min sessions. Results indicate that, although
participants achieve comparable scores over the first 25 min,
repeated individual learners reliably outperform extended in-
dividual learners after 50 min of accumulated time (Fig. 2).
This is surprising because, in contrast to extended individual
learners, repeated individual learners must recreate the items they
inherited at the beginning of the second session. To investigate
why, we analyzed the number of combinations produced by
individuals over a comparable period of time as a proxy for
effort. Over the first 25 min, extended individual learners produce
a comparable number of combinations to repeated individual
learners (estimated mean number of combinations = 209.9,
s.d. = 8.9 and mean = 227.7, s.d. = 9.0, respectively;
contrast 95% CI: (−4.58; 40.34), mean = 17.84). However,
extended individual learners produce fewer combinations during
the second 25 min of their experimental session compared to
the first 25 min (mean = 176.3, s.d. = 9.9; contrast 95%
CI: (−50.1;−17.6), mean =−33.6). Among repeated individual
learners, no reliable difference is observed between the first and
second sessions (mean = 227.7, s.d. = 9.0 and mean = 220.9,
s.d. = 9.0, respectively; contrast 95% CI: (−21.9; 8.6), mean
= −6.8). Additional contrasts confirm that extended individual
learners produce fewer combinations during the second part of
their experimental session compared to the second session of
repeated individual learners (contrast 95% CI: (−68.8; −20.1),
mean = −44.6).

Discussion

Over more than two decades, experiments have been used to
test various hypotheses concerning cultural evolution generated
by a body of formal theory developed over the last 50 y. In this
paper, we have reviewed key findings to have arisen from cultural
evolution experiments, as well as outlined major methodological
advances. We then turned to a specific outstanding issue,
reflecting criticisms of previous experiments (63): what is the
relevant individual learning control condition when attempting
to demonstrate cumulative culture in the lab? We suggest,
and demonstrate using an original experimental study involving
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commonly used experimental designs, that the answer to this
question is not as straightforward as first appears. Rather than
arguing over whether cumulative culture has or has not been
demonstrated (an issue which partly depends on which definition
a researcher uses, and may well be untestable in the lab in
any case), we think that it is more constructive to consider
the distinct challenges and trade-offs that social and individual
learning entail.

In our experiment, the comparison between social learners
in chains and repeated individual learners provides the most
straightforward test for the proposed baseline condition. In both
treatments, participants took part in sessions with equivalent
duration for an equivalent number of generations/sessions.
Perhaps surprisingly, we found that repeated individual learners
greatly outperformed social learners in chains. Due to the
improvement across generations in chains of social learners, a
process-focused definition would likely categorize this as a clear
case of cumulative culture. In contrast, the fact that performance
is lower among social learners than individual learners would
lead proponents of a product-focused definition to reject this
conclusion. However, our results also indicate that the suitability
of the implemented baseline condition is questionable from
a methodological perspective. Our experiment highlights how
the experience accumulated by individual learners over multiple
sessions translates into greater efficiency at reproducing the
items that compose their innovation record, and consequently
higher scores. This is a consequence of a well-known relationship
between individuals’ proficiency at a task and the amount of
experience they have (a relationship commonly referred to as a
“learning curve” (66)). By providing participants in individual
control conditions with an equivalent amount of accumulated
time as an entire chain, participants in individual control
conditions end up having much more experience with the task
than participants in chains.

Among individual learners, the effect of accumulated experi-
ence on proficiency is such that the amount of time it takes to
reproduce their innovation record remains stable across sessions,
even though the record increases in size. In comparison, social
learners need an increasing amount of time to reproduce what
has been discovered before, which substantially reduces the time
they can devote to innovating further. Among social learners, the
time needed to reproduce what has been discovered before goes
from 20% of session duration after one generation to 35% after
three generations. This illustrates the effect of variable acquisition
costs, which result from the increasing amount of accumulated
knowledge and skills that participants in later generations must
acquire. Theoretical models have shown that, when acquisition
costs increase over time, cumulative culture may come to a
point where individuals spend all their time acquiring what
previous generations have discovered before, which can stall the
cumulative process (67).

The fact that acquisition costs affect social learners to a greater
extent than individual learners shows that substantial amounts
of cultural loss occur within chains, even in a setting where
innovations are automatically transmitted across generations.
This is because individuals’ performance not only depends on
the accumulation of knowledge, but also skill (68). Furthermore,
knowledge is never fully transmitted between individuals. For
instance, individuals’ unsuccessful combinations are not shared
across generations, even though they might help to navigate the
problem space.

The proposed control condition might be even less suitable
when the experimental design involves groups. In addition to the

effects discussed above, groups will also produce more redundant
work than single participants. This is because participants in
groups work on the same problem at the same time. In our
experiment, learners in groups are likely to discover a low-level
innovation (e.g., a stone tool) faster than individual learners. Yet,
every group member will have dedicated their time to solving
this same problem. In comparison, most participants in chains
do not need to spend time figuring out how to produce a stone
tool (much like we do not need to spend time figuring out how to
make fire from flint and pyrite). This results in more opportunity
to innovate further along the chains, especially as the number of
participants involved in the process scales up.

The comparison between extended and repeated individual
learners also reveals that controlling for accumulated time gener-
ates another type of limitation linked to participants’ motivation.
Indeed, we observed a drop in the number of combinations
produced (a proxy for effort) among individual learners within
a single 50-min-long session. In our experiment, the appropriate
control for our social conditions required individual learners to
take part in a 100-min-long experiment (split over multiple
days for repeated individual learners). In other experiments,
controlling for time would have required individual learners
to take part in 640-min-long sessions (45). Beyond being
impractical, sessions this long are likely to significantly decrease
motivation and/or increase cognitive fatigue.

Importantly, the effects reported here likely do not apply
equally to all experimental designs. In some experiments, social
learning phases alternate with building phases, so social learning
would not reduce building time as occurred in our transmission
chain condition. Other experiments have implemented a phase
during which social learners can select a single demonstrator
from several options, e.g. based on the demonstrators’ score or
reputation. This would attenuate the cost of monitoring multiple
demonstrators as observed in our group condition. Features of
the experimental task are also likely to determine how acute the
reported effects are. Here, we used a task where participants
had to discover increasingly complex and nested innovations. As
shown above, this results in increasing acquisition costs over time,
which may be a central feature of open-ended cumulative culture
(69). Other tasks, however, might involve solutions of variable
efficiency but equivalent learning difficulty (43, 61). In our
experiment, the effect of variable acquisition costs might also be
reduced by providing learners with tools instead of recipes. This
would make social learners immediately ready to innovate further
and would reduce the gap with individual learners, although
individual learners would still have more accumulated experience
overall.

Even though the reported effects are likely to be mediated
by experimental designs and tasks, we believe that controlling for
accumulated time is not a solution as straightforward as it appears.
Rather we suggest acknowledging that the way humans solve
problems individually often differs qualitatively from the way we
solve them collectively. Individually, problem-solving abilities
are strongly limited by how much information individuals can
process and how much time they can dedicate to it. Collectively,
limitations in problem-solving abilities will mostly result from
our ability to coordinate and transmit information and skills.
What solving tasks collectively does is precisely circumvent the
bottlenecks limiting the achievements of isolated individuals,
such as their limited lifespan.

In conclusion, we have presented some original data that
examines the various trade-offs inherent in different experi-
mental designs and control conditions commonly used in the
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experimental study of cultural evolution. We hope that this
contributes to clarifying previous findings related specifically to
cumulative culture, but also to broader considerations in the
design of cultural evolution experiments. A well-developed and
continually evolving set of experimental designs and methods
promises to be a powerful tool within a broad science of cultural
evolution, as initiated 50 y ago.

Materials and Methods

Participants. 570 undergraduate participants (342 women) at the University
of Wisconsin-Madison completed the experiment in exchange for course credit.
Participants ranged in age from 18 to 43 y (mean 18.8 y, s.d. 1.5 y). Students
received credit based on the duration of each completed session (25 min or
50 min). Participants assigned to the repeated individual learning condition who
completed all four sessions were awarded additional credit as an incentive to
prevent dropout. Informed consent was obtained from all subjects before starting
the experiment. Ethical approval was given by the University of Wisconsin-
Madison. Six participants from the repeated individual learning condition did
not complete all four sessions and were excluded from all statistical analyses
(4 completed 2 sessions and 2 completed 3 sessions).

Task. Participants played a computer game programmed in Object Pascal with
Delphi 6 that simulated a real-world innovation process in which the production
of complex artifacts depended on the discovery of high-level innovations (62).
Discovering these innovations was contingent on the discovery of lower-level
innovations. Both low- and high-level innovations resulted from a specific
production process that was initially unknown to participants. Players were
initially provided with six basic resources that could be used without limit and
combined using a workshop panel containing four slots. After dropping between
one and four resources into this panel, players could trigger an automatic
refining process at no cost and without any limit by clicking on a “Try” button.
Innovations arose when players produced a combination that belonged to a list
of predetermined successful combinations. A specific slot displayed the result:
a red cross when the combination was unsuccessful, a new item otherwise.
When discovered, new items could be in turn associated with other items to
produce higher-level innovations. All combinations were allowed, including
those involving the repeated use of the same item. The order of the items in the
workshop panel had no effect on the result, so that 209 unique combinations
could be produced from six initial resources. The production of new items led to a
combinatorialexplosion,sothat1,000differentcombinationscouldbeproduced
after the discovery of four new items/innovations. In total, 27 additional items
(all useful) could be generated from the six initial resources. The accumulation
of innovations could result in the production of complex tools (such as axes)
that potentially allowed players to get logs by cutting trees. Basic logs required
at least eight innovations to be produced and were the minimal element that
could be dropped into a three-slot totem pole panel, which provided players
with a totem score. Logs could be refined when combined with relevant tools
(such as carving tools, pigments, brushes and so on) in the workshop panel. 115
different logs could be produced, so that a total of 142 innovations and 266,915
unique totems could be generated. Once a tool was discovered, the recipe for
its creation, i.e. the list of items that must be combined to create the tool, was
displayed in an “innovation record.” Participants could review their own past
discoveries by clicking on a tool to see its recipe.

Score Calculation. Each of the 115 different logs was associated with a unique
value that was randomly attributed within a range of scores that depended
on the log’s complexity. The complexity of logs was defined by the number of
innovations that was required to produce them. This means that logs with more
underlying innovations were always more rewarding, although two logs with
the same number of underlying innovations didn’t have the same value. The
score of a totem, which depended on the value of the logs and their diversity,
was calculated as follows:

ScoreTotem = (1 + 0.15�)(ScoreLog1 + ScoreLog2 + ScoreLog3)

With � taking the value 0, 1, or 2 depending on whether the totem pole
involved 1, 2, or 3 different logs. Totem scores ranged from 50 to 7,410 points.
The players’ final score equaled to the score of the best totem they built plus 15
points for each new items they produced.

Tutorial and Pregame Information. Before starting, the players completed
a tutorial during which basic actions, such as dragging and dropping resources
in the workshop panel, had to be completed. Players were informed that the
ultimate aim of the game was to build a totem pole, that innovations have to be
produced before being able to produce logs and that these logs could be used
and refined to make totems. They were also informed that their score depended
on the number of new items they will produce and the value of their totem.
The fitness function that determined the value of a totem was unknown by the
players.

Treatments. Participants were randomly assigned to one of four experimental
designs as specified in the main text. All participants had access to an information
panel whose content varied according to the treatment. Extended individual
learners were provided with their own score and a record of their own innovations
(alongside their best totem if any). Participants from other treatments benefited
from additional information and could switch between their own record and
others’ record by clicking on an anonymized name (e.g. “Participant 2”) and
associated score. Repeated individual learners and social learners in chains
experienced the exact same conditions, each starting a new session by inheriting
the innovation record produced during the previous session. The only difference
is that repeated individual learners inherited their own innovation record while
social learners in chains inherited the record that someone else had produced.
Participants in groups could observe the innovation record of any other member
of their group at any point during the session (participants’ score was updated
every 10 s). Innovation records provided the recipes for creating the tools,
but not the tools themselves. To use these tools in further combinations, the
tools, including all of the constituent parts, had first to be reproduced by the
participant observing the innovation record. Participants were free to decide
whether they wanted to observe an innovation record and when they wanted
to do so. Innovation records could be observed without any limitations in all
treatments.

Statistical Analysis. We ran a series of Bayesian models in R (70). Models were
fitted using the rethinking package (71) and 95% credible intervals were used
to make inferences. Three models were run to compare the score of participants
after 25, 50, and 100 min of accumulated time. For the 25-min model, scores
reached after 25 min by extended individual learners, at the end of the first
session by repeated individual learners, and at the end of the first generation
by social learners in chains were considered. We fitted a linear model with
“Score” as the outcome variable, and two dummy variables (one for repeated
individual learners and one for social learners in chains) as predictors. For the
50-min model, scores reached after 50 min by extended individual learners,
at the end of the second session by repeated individual learners, at the end
of the second generation by social learners in chains, and at the end of their
session by social learners in groups-of-2 were considered. We fitted a linear
model with “Score” as the outcome variable, three dummy variables (one for
repeated individual learners, one for social learners in chains, one for social
learners in groups) as predictors, and “Group identity” as a random effect for
social learners in groups. For the 100-min model, scores reached at the end
of the fourth session by repeated individual learners, at the end of the fourth
generation by social learners in chains, and at the end of their session by social
learners in groups-of-4 were considered. We fitted a linear model with “Score”
as the outcome variable, and two dummy variables (one for social learners in
chains and one for social learners in groups) as predictors, and “Group identity”
as a random effect for social learners in groups.

For the number of items inherited among repeated individual learners
and social learners in chains, we fitted a linear model with “Number of items
inherited” as the outcome variable, “Generation,” one dummy variable for
repeated individual learners and their interaction as predictors, and “Participant
(or Chain) identity” as a random effect.
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For the time needed to reproduce inherited items among repeated individual
learners and social learners in chains, the time needed to reproduce inherited
items was attributed to participants based on the inherited item that they
reproduced at the latest time. We fitted a linear model with “Time” as the outcome
variable, “Generation,” one dummy variable for repeated individual learners and
their interaction as predictors, and “Participant (or Chain) identity” as a random
effect. Note that not all participants reproduced the entire set of inherited items
(2 individual learners and 1 social learner at session/generation 2; 2 social
learners at generation 3; and 6 social learners at generation 4). All observed the
inherited innovation record except one of the individual learners.

For the cost of monitoring among social learners in chains and groups, we
used the number of times individuals switched between their own record and
others’ record as a proxy for the cost of monitoring cultural models. This number
was calculated for second- and fourth-generation social learners in chains and
social learners in groups of two and four. We fitted a linear model with “Number
of observations” as the outcome variable, and three dummy variables (one for
fourth-generation social learners in chains, one for social learners in groups-of-2,
one for social learners in groups-of-4) as predictors.

For the probability of producing redundant work among social learners in
chains and groups, for each participant, we computed both how many of their
combinations had not been produced before by any other member of their chain
or group and their total number of combinations produced. We ran two different
models. In the first, we analyzed data from social learners in groups-of-2 and first-
and second-generation social learners in chains. We fitted a binomial regression
with “Number of novel combinations” as the response variable, one dummy
variable for social learners in chains as the predictor, and “Group (or Chain)
identity” as a random effect. In the second, we analyzed data from social learners

in groups-of-2, social learners in groups-of-4 and first-, second-, third-, and
fourth-generation social learners in chains. We fitted a binomial regression with
“Number of novel combinations” as the response variable, two dummy variables
(one for social learners in groups-of-4 and one for social learners in chains) as
predictors, and “Group (or Chain) identity” as a random effect.

For the number of combinations produced among extended and repeated
individual learners, we used the number of combinations produced by extended
individual learners after 25 and 50 min, and the number of combinations
produced by repeated individual learners at the end of their first and
second sessions were considered. We fitted a linear model with “Number
of combinations” as the outcome variable, three dummy variables (one for
extended individual learners after 50 min, one for repeated individual learners
after first session, and one for repeated individual learners after the second
session) as predictors, and “participant identity” as a random effect.

Data, Materials, and Software Availability. Participant responses in the
experiment data have been deposited in Open Science Framework (OSF) (https://
osf.io/th2zc/) (72).
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