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Abstract

An experimental simulation of cultural evolution was conducted using the virtual arrowhead task. Participants designed “virtual
arrowheads” and tested them in “virtual hunting environments”, improving their designs through either individual trial-and-error learning or
by copying the design of another participant. A previous study using this task [Mesoudi, A., & O’Brien, M. J. (2008). The cultural
transmission of Great Basin projectile point technology I: An experimental simulation. American Antiquity, 73, 3—28.] found that a cultural
learning strategy of “copy-successful-individuals” was significantly more adaptive than individual learning. The present study explored the
robustness of this finding using the same task but under different conditions. It was found that (a) individual learning was significantly more
adaptive in a unimodal adaptive landscape than in a multimodal adaptive landscape, suggesting that the adaptive advantage of cultural
learning would disappear in unimodal environments; (b) the adaptive advantage of copy-successful-individuals was maintained when cultural
learning was permitted at regular intervals, despite the increased opportunity for information scroungers to inhibit exploration of the
environment, because participants flexibly switched between individual and cultural learning depending on circumstances; (c) allowing
participants to set access costs that other participants must pay in order to view their designs severely curtailed the use of cultural learning and
especially the copy-successful-individuals strategy.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Adaptive landscapes; Copy-successful-individuals; Cultural evolution; Cultural learning; Cultural transmission; Gene-culture coevolution; Indirect
bias; Producer—scrounger dynamics; Informational access costs; Prestige bias; Social learning; Virtual arrowhead task

1. Introduction construction and analysis of formal mathematical models of

cultural processes (e.g., Cavalli-Sforza & Feldman, 1981;

Over the past 30 years, the field of cultural evolution
(or gene culture coevolution/dual inheritance theory) has
sought to incorporate culture into evolutionary analyses of
human behaviour by treating culture as an evolutionary
process that operates in parallel to genetic evolution (Boyd &
Richerson, 1985, 2005; Cavalli-Sforza & Feldman, 1981;
Henrich & McElreath, 2003; Laland & Brown, 2002;
Mesoudi, Whiten, & Laland, 2004, 2006; Richerson &
Boyd, 2005). The majority of this work has involved the
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Boyd & Richerson, 1985, 2005) drawing on the methods of
theoretical population genetics. Such models have, for
example, explored the conditions under which culture itself
would be favoured by genetic evolution (Boyd & Richerson,
1985, 2005), the properties of different modes of cultural
transmission, such as vertical, oblique, and horizontal
transmission (Cavalli-Sforza & Feldman, 1981), and the
origin and consequences of various cultural forces, such as
conformity (Henrich & Boyd, 1998) and prestige bias
(Henrich & Gil White, 2001).

Mathematical models, however, are only as good as their
assumptions, and these assumptions, as well as the models’
predictions, need to be empirically tested. One way of doing
this is by using laboratory experiments (Mesoudi, 2007), and
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several studies have recently sought to simulate cultural
evolution and cultural transmission in the lab using
experimental methods (Baum, Richerson, Efferson, &
Paciotti, 2004; Caldwell & Millen, 2008; Efferson, Lalive,
Richerson, McElreath, & Lubell, 2008; Kameda & Naka-
nishi, 2002, 2003; McElreath et al., 2005; Mesoudi &
O’Brien, 2008; Mesoudi, Whiten, & Dunbar, 2006). In one
of these studies, Mesoudi and O’Brien (2008) experimen-
tally simulated a cultural learning strategy of “copy
successful individuals” [see Laland (2004); also resembling
Boyd & Richerson’s (1985) “indirect bias” or Henrich & Gil-
White’s (2001) “prestige bias”] using the “virtual arrow-
head” experimental task. In this task, participants played a
computer game in which they designed a technological
artifact (an arrowhead) either by individual trial-and-error
learning or by copying successful fellow participants.
Mesoudi and O’Brien found that allowing participants to
preferentially copy the designs of successful models resulted
in significantly improved performance relative to individual
learning controls, suggesting that this copy-successful-
individuals cultural learning strategy is significantly more
adaptive than individual learning.

Here I present a further experiment using the same
virtual arrowhead task that is designed to explore the
robustness of this earlier finding. Specifically, the present
study asks whether the copy-successful-individuals strategy
remains adaptive when (a) the shape of the adaptive
landscape that determines a design’s fitness is changed
from multimodal to unimodal, thus making individual
learning easier; (b) when cultural learning is permitted at
regular intervals throughout the experiment rather than
only during the last few trials, thus allowing greater
opportunity for the emergence of free-riding information
scroungers; and (c) when potential models can set
informational access costs that potential learners must
pay in order to access the models’ information. Before
discussing the theoretical basis of these issues, the
following section provides more details of the virtual
arrowhead experimental task.

2. The virtual arrowhead experimental task

Mesoudi and O’Brien (2008) employed a computer-
based experimental task in which participants designed
their own virtual arrowheads. [The aim of that study was
to simulate a specific archaeological scenario of past
cultural evolution proposed by evolutionary archaeolo-
gists Bettinger and Eerkens (1999); however, these
archaeological details are not directly relevant to the
present study and are not discussed further.] Participants
are told to imagine themselves as hunters in the distant
past and told that they must design an arrowhead that
they will then use to go hunting for food. They are told
that their hunting success depends on the design of their
arrowhead: Some arrowhead designs give higher returns
than other arrowhead designs, and it is their task to find

the best/optimal arrowhead design for their particular
hunting environment.

The participants enter values for five attributes of their
arrowhead: length, width, thickness, shape, and color. The
first three attributes are continuous, ranging from 1 to 100
arbitrary units, and the last two are discrete, each taking
one of four different values. Once the participants have
entered values for all five attributes, they can test their
design by going on a hunt (trial), during which they are
given feedback on the success of their arrowhead design.
This feedback is given in calories, ranging from 1 to 1000,
which is partly determined by the participants’ chosen
attribute values via experimenter-set fitness functions.
These fitness functions may vary in shape (e.g., unimodal
or bimodal: see Section 3.1) or, alternatively, attributes
may be neutral (e.g., color) and not affect fitness. This
mix of continuous and discrete, functional and neutral
attributes is intended to provide a more realistic simulation
of cultural (especially technological) evolution compared
with previous cultural evolution experiments (e.g., Effer-
son et al, 2008; Kameda & Nakanishi 2002, 2003;
McElreath et al., 2005), which employ a relatively simple
task featuring a single dichotomous attribute (e.g., which
one of two crops to plant). There is also random error in
the feedback, where the feedback displayed to participants
was randomly drawn from a normal distribution with a
mean of the actual fitness of the participant’s arrowhead
design and a standard deviation of 5 calories. This small
random error makes individual learning somewhat unreli-
able, which is probably more representative of most real-life
learning tasks than an assumption of perfect environmental
feedback. During a typical hour-long experiment, the
participant plays three seasons of hunting, with each
season comprising 30 hunts. There are therefore 30
opportunities to improve one’s arrowhead design during
each season.

In order to explore the effect of cultural/social learning,
participants play the virtual arrowhead game on networked
PCs. The experimenter can allow participants to view the
arrowhead design of one or more other participants in the
same group via the on-screen interface. In Mesoudi and
O’Brien (2008), participants in groups of six had to learn
individually for the first 25 hunts of each season before
being allowed to copy each other during the last five hunts
of each season. Specifically, we simulated a copy-
successful-individuals cultural learning strategy, in which
participants could see the cumulative score of every other
participant in their group and choose to copy one of those
fellow group members. The strategy followed by the
majority of participants was to copy the arrowhead of the
participant with the highest score. As shown in Fig. 1A,
participants who could employ the copy-successful-indivi-
duals cultural learning strategy significantly outperformed
individual controls (who did not engage in cultural
learning at any time) during the last five hunts when the
former were allowed to copy one another.
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3. Aims of the current study

The experiment reported here was designed to explore the
robustness of the aforementioned finding that a copy-
successful-individuals cultural learning strategy is more
adaptive than individual learning. The virtual arrowhead task
described above was modified in several ways, designed to
test the adaptiveness of the copy-successful-individuals
strategy under a wider range of conditions. Aspects of the
task that did not change were the season/hunt structure (three
seasons of hunting, 30 hunts per season), the number of
attributes (three continuous, two discrete), the method of
input and feedback, the group sizes (groups of five or six
plus individual controls), and the form of cultural learning
(copy-successful-individuals, where participants have access
to other group members’ cumulative scores and can copy on
the basis of this information).

3.1. Unimodal vs. multimodal adaptive landscapes

Boyd and Richerson (1992) have argued that much
cultural evolution, just like much biological/genetic evolu-
tion, operates within adaptive landscapes of varying shapes.
An “adaptive landscape” is a concept commonly used in
evolutionary biology (Arnold, Pfrender, & Jones, 2001;
Wright, 1932) to represent the design space of all possible
combinations of multiple phenotypic characters, where the
height of the landscape represents fitness. “Peaks” in the
landscape represent phenotypes of high fitness, while
“valleys” represent phenotypes of low fitness. The same
principles are likely to apply to technological artifacts, given
that many artifacts are similarly determined by multiple
characters each of which contribute to the artifact’s success
or cultural fitness. This leads to the prediction:

“If the adaptive [landscape] has a unique maximum, then
every population will evolve to the same equilibrium mean
phenotype, independent of its starting position. On the other
hand, if there is more than one local maximum, different
equilibrium outcomes are possible depending on initial
conditions.” (Boyd & Richerson, 1992, p. 191)
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Mesoudi and O’Brien (2008) implemented the latter, a
multimodal adaptive landscape with multiple locally optimal
peaks. Our adaptive landscape represented all possible
arrowhead designs, or all possible combinations of all
attribute values, where the height of the landscape represents
the payoff to the participant of that arrowhead design. We
made the landscape multimodal by giving each of the three
continuous attributes (length, width, and thickness) bimodal
fitness functions, as shown in Fig. 1B. (See Appendix A for
fitness equations. The two discrete attributes did not affect
the shape of the adaptive landscape.) Each attribute therefore
had two locally optimal values, one local and one global;
deviation from either of these optima reduced the feedback
score, but the global optimum gave a higher score than the
local optimum. The score seen by participants was propor-
tional to the sum of all attributes’ fitness contributions,
therefore giving a multimodal adaptive landscape with eight
peaks of varying fitness. For example, the highest peak is
found where length, width, and thickness are all at their
global optima, a slightly lower peak where length and width
are at global optima and thickness is at its local optimum, and
so on. There are 2°=8 peaks in total. Mesoudi and O’Brien
predicted that individual learning would result in different
participants getting stuck on locally optimal but globally
suboptimal fitness peaks, whereas copy-successful-indivi-
duals cultural learning allows participants to “jump” from
their low-fitness peak to a higher-fitness peak found by a
more successful member of their group. As shown in
Fig. 1A, we did indeed find that cultural learners
outperformed individual learners, consistent with this
prediction. Hence it appeared that the multimodal adaptive
landscape was instrumental in making the copy-successful-
individuals strategy more adaptive than individual learning.

The first aim of the present study was to further test this
explanation for the adaptive advantage of copy-successful-
individuals. If individual learning is indeed hampered by
multimodal fitness environments because individuals get
stuck on locally optimal peaks, then removing those peaks
should significantly improve individual learners’ perfor-
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Fig. 1. (A) Mean score per participant in Mesoudi and O’Brien (2008), comparing individual learners with cultural learers. The latter group could engage in copy-
successful-individuals cultural learning only during the final five hunts, to the right of the vertical dotted line. Error bars show standard error. (B) An example bimodal fitness
function for one of the continuous arrowhead attributes, length. Here, a length of 30 gave a maximum fitness contribution of /] =1, while a length of 75 gave a locally
optimal but globally suboptimal fitness of #;=0.66. Length, width, and thickness each had bimodal fitness functions like this, with peaks at different x-axis values.
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mance. Thus, in the first season of hunting, individual
learners experienced a unimodal fitness environment with a
single optimum/peak. It is predicted that these unimodal
individual learners will easily find this single optimum, thus
perform just as well as the cultural learners of Mesoudi and
O’Brien (2008), eliminating the adaptive advantage of the
copy-successful-individuals strategy.

3.2. Terminal vs. periodic cultural learning

The opportunity for cultural learning in Mesoudi and
O’Brien (2008) was limited to the final 5 hunts of a 30-hunt
sequence and followed a much longer period of individual
learning (henceforth referred to as “terminal cultural
learning”). In reality, however, people are not forced to
undergo a period of obligatory individual learning before
being allowed to engage in cultural learning. Rather, they can
switch between individual and cultural learning as they see
fit. In the present experiment, participants therefore engaged
instead in “periodic cultural learning”, where they could
copy other participants every fifth hunt after the first five
hunts (Hunts 6, 11, 16, 21, and 26). It is predicted that
making cultural learning periodic throughout the season will
favour the emergence of “information scroungers”—partici-
pants who forego lengthy and costly individual learning
and instead consistently free-ride on the individual learning
efforts of other participants (“information producers”) in
the group. Whereas terminal cultural learning has an
enforced period of individual learning during which the
adaptive landscape can be more extensively explored by
all group members, periodic cultural learning allows
information scroungers to consistently free-ride throughout
the season, thus inhibiting exploration of the adaptive
landscape and reducing the chances that the globally
optimal design is found. Hence, it is predicted that periodic
cultural learners will have lower mean scores than terminal
cultural learners.

In support of this prediction, Kameda and Nakanishi
(2002) found experimentally that participants divided
themselves into information producers and information
scroungers in the manner suggested above, and that these
two groups coexisted at equilibrium. Moreover, a model
analysed by Rogers (1988) suggests that a mix of individual
and cultural learners can never have a mean fitness greater
than a population of all individual learners because of the
presence of information scroungers in the former. This might
be used to predict that periodic cultural learners will in the
present study perform no better than individual controls.
However, the reason why information scroungers are
predicted to reduce group fitness is different in the present
study compared to Rogers’ model and Kameda and
Nakanishi’s experiment. In the latter, the reason that
information scroungers reduce group fitness is environmen-
tal change. Because information scroungers cannot track
novel environmental change, group fitness is reduced when
scroungers copy outdated information from each other. In a
constant environment, on the other hand, once information

producers have acquired the optimal behaviour, then
information scroungers can copy this optimal behaviour
with no reduction in group fitness (in fact, group fitness
should increase given the assumed lower learning costs of
scrounging). In the present experiment, the environment
does not change, but it is predicted that information
scroungers will emerge and reduce group fitness for a
different reason: the multimodal adaptive landscape. Infor-
mation scroungers will reduce group fitness by reducing the
number of participants learning individually, thus reducing
the chances that one of the higher fitness peaks will be found.
Note also that the detrimental effect of information
scroungers would persist even after equilibrium is reached,
because this equilibrium is less likely to be the globally
optimal, high-fitness design.

3.3. Informational access costs

An unrealistic aspect of all of the cultural evolution
experiments mentioned so far is that potential models
have no choice whether to allow potential cultural learners
to copy them. It is much more likely that, at least
amongst non-kin, successful or attractive models might set
an “access cost” that others must pay in order to gain
access to their knowledge. Henrich and Gil-White (2001)
have argued that information is commonly treated as a
good that is traded between models and learners, with
low-status individuals giving gifts or deference to high-
status (prestigious) individuals in exchange for their
expert knowledge, as is commonly observed in the
ethnographic record.

In the third season of the present experiment,
participants were allowed to set access costs that other
participants had to pay them in order to view their
arrowhead design. These costs were expressed in the same
units as the hunting feedback (calories) and were added
and deducted from each player’s total score in real time. It
is predicted that access costs will reduce the frequency of
cultural learning and especially the copy-successful-
individuals strategy, because successful players will set
high access costs in an attempt to protect their high-quality
information from potential competitors. Hence, groups in
which access costs can be set are predicted to have lower
mean scores than groups in which access costs cannot be
set. On the other hand, some successful players might set
prices that are not excessively high, thus receiving modest
fees from several other players and increasing their score
further. If the buyers receive information that increases
their score by more than the price they paid, then their
costs will be offset, and the mean score of the entire group
would increase. Thus, access costs might generate an
“information goods” market in which the information-rich
get even richer, while a trickle-down effect makes the
information-poor slightly less poor. Given the lack of
formal theoretical work in the cultural evolution literature
on access costs, however, this aspect of the study remains
somewhat exploratory.
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4. Methods

Details of participants and procedure for Mesoudi and
O’Brien (2008) can be found in that publication. The
following describes the methods and participants for the new
experiment only.

4.1. Participants

Seventy-five participants of mean age 16.51 years
(SD=0.58) participated in the experiment. Participants were
unpaid and completed the study as part of an A-Level
Psychology class at a sixth form (11th grade) college in
Cambridge, UK. The participants (64% female) had little
experience of participating in psychology experiments and no
knowledge of the theory discussed above. Seventeen
participants were individual controls. The other 58 formed
eight groups of 6 (n=48) and two groups of 5 (#=10). Due to
computer failure, for participants in one session (three groups
of 6, n=18) the final season of hunting was not completed, so
Season 3 data are available for 40 participants only. However,
there is no reason why these participants’ data would differ
from the data of participants who completed the entire study.

4.2. Procedure

The experiment was run in a large computer classroom.
Each participant sat at a physically separate, networked
computer and completed the experiment entirely via the on-
screen interface. Participants were randomly allocated to a
group or to be an individual control. Participants were
instructed not to talk or communicate with each other except
via the computer program, and not to write anything down.
The entire study lasted 45—60 min.

4.3. Task

The aim of the virtual arrowhead experiment is to design a
“virtual arrowhead” and test this arrowhead design in a
“virtual hunting environment”, all via a computer program
(programmed in Borland C++ Builder 6.0; code available
upon request). Participants entered values for five arrowhead
attributes: length, width, and thickness (continuous attributes
each ranging from 1 to 100 arbitrary units), shape and color
(each taking one of four discrete values). Once valid values
of each attribute had been entered, participants could press
the HUNT button to receive feedback in calories, ranging
from 1 to 1000. The experiment was divided into three
seasons each comprising 30 hunts (trials). The stated
objective was to find the optimal values of each attribute
that would give the highest possible score (1000 calories).
This score was calculated using fitness functions (see
Appendix A), although participants were told nothing
about these functions. There was also random error in the
feedback, with the score seen by participants randomly taken
from a normal distribution with a mean given by the fitness
of their arrowhead design and a standard deviation of 5 units.
Participants were informed about the presence of random

error in feedback, but not its magnitude. During each season,
the running total of all calories received during every hunt up
to that point was displayed on screen, giving a cumulative
score, and participants in groups were informed how they
ranked within their group with respect to this cumulative
score. At the start of each season the cumulative score was
reset to zero and the optimal values were changed, although
optimal values did not change within each season.
Participants were informed that optimal values changed
between seasons and not during seasons.

Individual controls played all three seasons with no
opportunity to learn from other participants; hence these
participants relied entirely on individual trial-and-error
learning. Participants in groups (“cultural learners”) could,
every five hunts (Hunts 6, 11, 16, 21, and 26), see on screen a
list of other participants in their five- or six-person group,
anonymously labelled Player 1, Player 2, etc. Displayed next
to each of these labels was each player’s cumulative score.
Each participant could click on a button next to one of the
other group members’ labels and that person’s attribute
values were displayed on their screen next to their own
values. The participant could then modify their own attribute
values to match the model’s attribute values if they wished.
There was no obligation at any point to either view another
group member’s design or view the most successful group
member’s design, or even if viewed to change one’s own
arrowhead design to match the model’s. Video clips of
participants playing an individual learning hunt and a
cultural learning hunt of the virtual arrowhead task can be
found in the Electronic Supplementary Material.

4.4. Design

Each season differed in order to test the predictions
made above. During Season 1, the individual controls
experienced unimodal fitness functions (see Section 3.1 and
Appendix A). Each attribute had a single optimal value
(what was formerly the global optimum), giving a single
optimal point design. This condition was then compared
with equivalent data from Mesoudi and O’Brien (2008) in
which individual learners faced a multimodal environment.
Cultural learners in all three seasons, and individual
controls in Seasons 2 and 3, experienced bimodal fitness
functions, as in Mesoudi and O’Brien. Unlike in Mesoudi
and O’Brien, cultural learning in all three seasons was
periodic (see Section 3.2), i.e., permitted every fifth hunt
(Hunts 6, 11, 16, 21, and 26). Hence, a comparison could
be made between periodic and terminal cultural learning,
both occurring within a multimodal environment. During
Season 3, cultural learners were asked to set a price in
calories that other players would have to pay in order to
view their arrowhead design (see Section 3.3). Participants
set this price immediately before each cultural learning
hunt. During these hunts each player’s price was displayed
next to their label and cumulative score. If a participant
chose to copy another player in Season 3, then the model’s
price was automatically and immediately deducted from the
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learner’s cumulative score. Following each cultural learning
hunt, participants were informed of how many other
players had copied them and how many calories they will
consequently receive (number of players copying them
multiplied by their access cost) and they saw their score
increase by this amount.

4.5. Statistical analyses

In order to compare different experimental conditions,
mixed analyses of variance (ANOVAs) were performed
typically on the last five hunts of each season. Hunt was a
within-groups factor with five levels, and experimental
group was a between-groups factor with two levels (cultural
learners vs. individual controls). The last five hunts were
singled out to enable a comparison with the terminal cultural
learning of Mesoudi and O’Brien (2008), which only
occurred during these final five hunts, and because
equilibrium had typically been reached by these last five
hunts (see Electronic Supplementary Material).

5. Results

5.1. How does the shape of the adaptive landscape affect the
adaptiveness of individual learning?

Fig. 2 shows the mean score of the unimodal individual
learners from Season 1, with the multimodal individual
learners and multimodal cultural learners from Mesoudi and
O’Brien (2008) for comparison. Unimodal individual
learners from the present study outperformed multimodal
individual learners from Mesoudi and O’Brien, a difference
that was significant over the final five hunts [F(1,45)=6.28,
p<.016]. This indicates that individual learning was
significantly more adaptive in unimodal environments than
in multimodal environments. Against this background, the
advantage observed by Mesoudi and O’Brien for copy-
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Fig. 2. Mean scores of unimodal individual learners from the present study,
multimodal individual learners from Mesoudi and O’Brien (2008), and
multimodal/terminal cultural learners from Mesoudi and O’Brien. The latter
could engage in cultural learning only during the final five hunts. Error bars
show standard error.

successful-individuals disappears, given that this strategy
does not differ significantly from unimodal individual
learning over the last five hunts [F(1,33)=0.13, non-
significant (ns)]. In fact, the mean score at the final hunt
for unimodal individual learners (866.28) was very similar to
the mean score at the final hunt for the terminal/multimodal
cultural learners (869.09), and both were much larger than
the equivalent value for multimodal individual learners
(785.72). Hence, the hypothesis that individual learning is
easier/more adaptive in unimodal environments than multi-
modal environments, such that the observed advantage of
cultural learning disappears, is supported.

It should be noted that the two fitness environments
(unimodal and multimodal) differed in their average payoff
irrespective of the shape of the adaptive landscape. The
average payoff from the multimodal environment (i.e., the
average score from every value of every attribute) was 565
calories, while the equivalent average payoff from the
unimodal environment was 430 calories (imagine removing
the smaller normal distribution from Fig. 1B and the
resulting drop in average fitness across all values of length).
This means that unimodal individual learners would have
received lower scores than would multimodal individual
learners if they chose attribute values purely at random.
Indeed, this can be observed in the very first hunt in Fig. 2.
This a priori disadvantage for unimodal individual learners
was rapidly overcome, however, given that unimodal
individual learners eventually outperformed multimodal
individual learners, and makes the fitness advantage seen
for unimodal individual learners more impressive.

5.2. How do periodic cultural learners compare with
terminal cultural learners and individual learners?

Fig. 3 shows, separately for Seasons 1 and 2, the mean
score for periodic cultural learners, terminal cultural learners,
and individual learners (all of whom learned in a multimodal
fitness environment, such that none of the differences
discussed below can be attributed to differences in fitness
functions). For Season 1 (Fig. 3A), the mean cumulative
score (the sum of the scores from all 30 hunts) was
significantly higher for periodic cultural learners than
individual learners [independent samples ¢ test: #(86)=2.38,
p<.02]. However, there was no significant difference in
mean score between periodic cultural learners and individual
learners during the final five hunts [F(1,86)=2.52, ns]. So
groups of periodic cultural learners during Season 1 showed
superior performance over the entire 30 hunts, but did not end
up at equilibrium with higher scores than individual controls.
This can be contrasted with terminal cultural learners, who
did not show superior performance over individual learners
until the final five hunts. Periodic and terminal cultural
learners can also be directly compared after equivalent
numbers of cultural learning opportunities (e.g., the first
cultural learning opportunity for terminal cultural learners
was Hunt 26, the equivalent for periodic cultural learners was
Hunt 6). For Season 1, the terminal cultural learners
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Fig. 3. (A) Mean scores for periodic cultural learners from Season 1 of the
present study, individual learners from Mesoudi and O’Brien (2008), and
terminal cultural learners from Mesoudi and O’Brien. All three groups
experienced the same multimodal environment. Error bars show standard
error. (B) Equivalent data for Season 2 of both studies.

significantly outperformed the periodic cultural learners at
every equivalent cultural learning hunt [#’s(74)>2.13,
p’s<.015]. Hence, the prediction that periodic cultural
learning results in lower fitness than terminal cultural
learning and performs no better than individual learning is
upheld for Season 1. For Season 2 (Fig. 3B), the mean
cumulative score was significantly higher for periodic
cultural learners than individual controls [#(86)=2.73,
p<.01], and periodic cultural learners significantly out-
performed individual controls over the last five hunts
[F(1,73)=8.49, p<.005]. Comparing equivalent cultural
learning opportunities for periodic and terminal cultural
learners during Season 2, only the first opportunity
significantly differed in score [#74)=3.94, p<.001], with
the others showing no significant difference [#’s(74)<1.98].
So the prediction that periodic cultural learning results in
lower fitness than terminal cultural learning and does not
outperform individual learning was not supported for
Season 2.

It was argued that periodic cultural learners would
perform less well than terminal cultural learners because

information scroungers in the former would inhibit explora-
tion of the adaptive landscape, making it less likely that
groups of periodic cultural learners will find the global
optimum than terminal cultural learners, who have an
enforced period of individual learning exploration before
cultural learning is allowed. This can be tested by comparing
the number of attributes that are at their global optima for
terminal vs. periodic learners at equilibrium, predicting that
the former should have more. The number of continuous
attributes that were £5 units of the global optimum at Hunt
30 was tallied, giving a number between 0 and 3 for each
participant. For Season 1, there was a non-significant trend
for terminal cultural learners to have found more global
optima than the periodic cultural learners (Mann—Whitney
test: z=1.74, p=.082). For Season 2, there was no difference
between terminal and periodic cultural learners (z=0.46,
p=.643). Hence, there is suggestive but not conclusive
evidence that there was less exploration of the adaptive
landscape by the periodic cultural learners in Season 1,
resulting in lower fitness than terminal cultural learners, as
predicted. For Season 2 there was no difference in
exploration between the two groups, and periodic cultural
learners performed equally as well as the terminal cultural
learners, contrary to predictions.

To explore this unexpected finding further, more
detailed analyses were carried out on the participants’ use
of social information. Recall that cultural learners were not
obligated to view another participant’s design, nor view the
most successful group member, nor change their own
design to match the model’s when they had viewed.
Fig. 4A shows the frequency of cultural learners who chose
to view another player’s design, further divided into those
who viewed the most successful member of their group vs.
those who viewed a different group member. Across all
viewing opportunities in Seasons 1 and 2, a majority of
participants chose to view during every viewing opportu-
nity (irrespective of who they viewed). Except for the first
cultural learning hunt of Season 1, the majority of
participants during Seasons 1 and 2 who viewed another
player’s design chose to view the most successful group
member. Across all hunts of Season 1, 76.8% of
participants who viewed chose to view the most successful
group member (85.5% excluding Hunt 6). This choice
significantly differed from that expected if participants
were selecting models at random [%*(5)=469.00, p<.001].
Season 2 showed the same pattern, with a majority of
views targeting the most successful group member (81.4%),
which again significantly differed from random choice
[%*(5)=498.44, p<.001]. Aside from the first opportunity of
Season 1, which might be discounted as a practice trial
during which the participants learned how to use the
viewing feature of the program, the majority of cultural
learners who viewed during Seasons 1 and 2 employed the
copy-successful-individuals strategy.

However, we still cannot be sure that participants who
viewed another participant’s design actually changed their
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Fig. 4. (A) Percentages of periodic cultural learners who viewed another
participant’s arrowhead design during each cultural learning opportunity.
Bars are divided into instances in which participants copied the most
successful member of their group vs. instances in which another
member of the group was copied. (B) Mean social influence, s, the
degree to which a cultural learner modified their attribute values to more
closely match the attribute values of a viewed model. Error bars show
standard error.

own design to match the models’. A measure of “social
influence”, s, was therefore calculated, defined as the
degree to which a cultural learning participant who
viewed another participant’s design changed their own
attribute values to be more similar to the attribute values
of the model that they viewed (see Appendix B for details
of how s was calculated). Positive values of s indicate
that a participant made their design more similar to the
model’s, while negative values of s indicate movement
away from the model’s design. The size of s indicates the
magnitude of this change. When s=0, there is no change
in the participant’s design relative to the model’s. Fig. 4B
shows that s was positive during every cultural learning
hunt of Season 1 and consequently significantly differed
from zero [one-sample ¢ test: #199)=8.66, p<.001], and
was also positive during Season 2, again significantly
different from zero [#(181)=7.96, p<.001]. Most of this
Season 2 change took place during the first two cultural
learning opportunities.

The within-participant consistency of s can be used to
determine whether the periodic cultural learners were
polymorphic or monomorphic (Kameda & Nakanishi,

2002). Polymorphism is where some participants consis-
tently engage in individual learning (with s=0) and others
consistently engage in cultural learning (with s>0), such that
each participant’s values of s would be relatively consistent
over trials. Monomorphism is where every participant
engages in either individual learning or cultural learning
with a fixed probability, such that their values of s are
inconsistent over trials. An index of the within-participant
consistency of s over trials was therefore calculated (see
Appendix B). This index ranged from 0 (entirely incon-
sistent) to 4 (entirely consistent). For Season 1, the mean
consistency was 2.34 (SD=1.28), which was significantly
different from a perfect consistency of 4 [#(57)=9.86,
p<.001]; for Season 2, the mean consistency was 2.45
(SD=1.23), again significantly different from 4 [#(57)=9.60,
p<.001]. This indicates a deviation from pure polymorphism
(index=4) and suggests that participants were switching
between individual learning and cultural learning over the
course of the seasons.

The inconsistency in social information use suggests
that participants may have been flexibly switching
between individual and cultural learning according to
circumstances. Boyd and Richerson (1995) found analy-
tically that populations of flexible learners, who engage
in individual learning when individual learning is easy/
cheap and cultural learning when individual learning is
difficult/expensive, do better than both populations of all
individual learners and polymorphic populations of
individual and cultural learners who cannot switch
strategies. Perhaps the participants here were similarly
switching from individual to cultural learning when they
found that individual learning was not effective. This
would predict negative correlations between the cues of
performance that the participants received (cumulative
score and rank) and their use of social information (s):
Participants who receive feedback that they are perform-
ing badly within the group (low score/rank) should be
more likely to use social information (high s). For
Season 1 (discounting Hunt 6, see above), there was a
significant and negative correlation between score and s
(r=—13, p<.05) and between rank and s (r&—.19,
p<.005). Season 2 also showed significant (and stronger)
negative correlations between score and s (=—29,
p<.001) and between rank and s (r&=—26, p<.001). The
fact that Season 2 correlations were higher than Season 1
correlations might explain why periodic cultural learning
more effectively outperformed individual controls during
Season 2 than Season 1, and matched terminal cultural
learning in the former but not the latter. In summary, the
advantage of periodic cultural learners over individual
controls shown in Fig. 3B might be attributed to a
combination of two cultural learning strategies described
by Laland (2004): “copy successful individuals” and
“copy when behaviour is unproductive”, yielding the
composite strategy, “copy successful individuals when
behaviour is unproductive”.
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5.3. Do informational access costs reduce the frequency of
cultural learning?

Fig. 5A shows the effect of access costs on mean score
during Season 3, with individual learners from Season 3
and cultural learners from Season 2 (who could not set
access costs) for comparison. There was no significant
difference between the access-cost-cultural-learners and
individual learners during the final five hunts of Season 3
[F(1,55)=0.24, ns]. There was also no difference between
the mean cumulative scores of the individual controls and
access-cost-cultural-learners [#(55)=0.73, ns]. The Season 2
no-access-cost-cultural-learners, by contrast, significantly
outperformed the Season 3 access-cost-cultural-learners
during the final five hunts [F(1,39)=15.59, p<.001].

Season 3 cultural learners set an average access cost of
664.84 calories for others to access their designs, although
this varied widely across participants (SD=2410.18; range,
0-23,000). These access costs had the effect of reducing the
frequency of cultural learning (Fig. 4A). On average,
participants viewed another players’ design 1.35 times (out
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Fig. 5. (A) Mean scores for periodic cultural learners during Season 3, who
could set access costs, periodic cultural learners during Season 2, who could
not set access costs, and individual learners during Season 3. (B) Mean
access costs set by participants during all cultural learning opportunities of
Season 3. Error bars show standard error.

of a maximum of 5) during Season 3, compared to 3.75 for
Season 1 [significantly higher, paired samples ¢ test: #(39)=8.39,
p<.001] and 3.14 during Season 2 [significantly higher:
#39)=8.23, p<.001]. However, when other players were
viewed, they were more likely to be copied, as shown by
higher values of s during Season 3 in Fig. 4B. Within-
groups ANOVAs showed that s was significantly higher
during Season 3 than during Season 1 [F(1,19)=8.80,
p<.01] and Season 2 [F(1,19)=9.21, p<.01]. Hence,
participants were more likely to use information that they
paid for compared to information they received for free.
Fig. 4A also shows that participants in groups were much
less likely to view the most successful group member’s
design during Season 3 than during Seasons 1 and 2. Only
36% of participants who viewed chose to view the most
successful group member during Season 3 (compared to
76.8% for Season 1 and 81.4% for Season 2). Instead, most
participants (44%) chose to copy the second best group
member. These choices were significantly different from
chance [%*(5)=51.28, p<.001]. The reason that participants
switched from copying the most successful group member to
copying the second best is because the most successful group
member set much higher access costs than other group
members (Fig. 5B). The top-ranked player in each group set
access costs that were on average 10 times higher than the
access costs of lower-ranked group members, and high-
ranked players generally set higher access costs (group rank
significantly and positively correlated with access cost:
rs=.39, p<.001). High-ranked participants also received
higher payments as a result of being viewed, such that
payment received positively correlated with group rank
(r=.39, p<.001), and high-ranked players tended to pay less
to view other players’ designs, such that group rank
negatively correlated with price paid (r,=—.19, p<.01).

5.4. Additional analyses

Additional analyses can be found in the Electronic
Supplementary Material, which show that (a) participants
modified continuous attributes more than discrete attributes
but were not sensitive to different fitness weights of different
continuous attributes; (b) there was some evidence that
participants kept their values from the previous season when
starting a new season despite being told that optimal values
change between seasons, but this carry-over quickly
disappeared as participants learned in the new environment;
(c) most participants reached equilibrium within the allotted
30 hunts; and (d) there were no batch effects between the
present study and that of Mesoudi and O’Brien (2008). None
of these additional findings were found to affect the
conclusions presented above.

6. Discussion

To briefly summarise the results, it was found that (a)
individual learning was significantly more adaptive in
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unimodal adaptive landscapes than in multimodal adaptive
landscapes, such that the advantage of the copy-success-
ful-individuals cultural learning strategy found by
Mesoudi and O’Brien (2008) disappears; (b) periodic
cultural learning, featuring regular cultural learning
opportunities throughout the experiment, was (in Season
2) significantly more adaptive than individual learning,
and performed equally as well as the terminal cultural
learning in which cultural learning was permitted only on
the final few trials; (c) allowing participants to set
informational access costs that others must pay to view
their designs significantly reduced the frequency of
cultural learning and especially the use of the copy-
successful-individuals strategy, turning cultural learners
effectively into individual learners. The following sections
discuss each of these findings in turn.

6.1. The shape of the adaptive landscape can affect
cultural evolution

Individual learning was found to be significantly more
adaptive in unimodal adaptive landscapes, in which there is a
single optimal arrowhead design, than in multimodal adaptive
landscapes, in which there are multiple locally optimal
arrowhead designs of different fitness. In unimodal environ-
ments, simple reinforcement learning will always lead to the
best possible arrowhead design from any starting point. [A
reinforcement learning algorithm might be “increase/decrease
an attribute by a certain amount; if your score increases then
increase/decrease that attribute further; if your score decreases
then decrease/increase the attribute”, which was shown by
Mesoudi and O’Brien (in press) to generate comparable results
to the individual learners in Mesoudi and O’Brien (2008).] In
multimodal environments, by contrast, learners can get stuck on
locally optimal but globally suboptimal peaks, reducing the
mean fitness of the population. Copy-successful-individuals
cultural learning allows individuals to jump from locally
optimal peaks found via individual learning to the globally
optimal peak found by a more successful member of the
population. However, if the environment is unimodal, then this
advantage of cultural learning is eliminated.

Consistent with this, the unimodal individual learners of
the present study achieved mean fitness equivalent to the
multimodal cultural learners of Mesoudi and O’Brien
(2008). Hence, the adaptive advantage of copy-successful-
individuals cultural learning disappeared when individual
learning was unimodal. It should be noted that these
conditions are not strictly comparable because there was
no unimodal cultural learning group. While this can be tested
in future studies, it is highly unlikely that unimodal cultural
learners would outperform unimodal individual learners.
Models (Boyd & Richerson, 1995) and experiments
(McElreath, et al., 2005; Mesoudi & O’Brien, 2008) both
suggest that making individual learning easier, as it is in
unimodal environments, makes cultural learning relatively
less adaptive.

This finding is important because actual cultural evolu-
tion is likely to occur in multimodal adaptive landscapes
(Boyd & Richerson, 1992; Mesoudi & O’Brien, 2008) in
which there are several stable, locally optimal artifact
designs or mental representations of varying fitness.
Previous cultural evolution experiments (e.g., Kameda &
Nakanishi, 2002, 2003; McElreath et al., 2005; Efferson et
al., 2008) have used relatively simple dichotomous cultural
traits (e.g., which of two crops to plant), one of which has
higher fitness than the other. While simplicity is often
desirable in order to draw tractable conclusions, a full
understanding of cultural evolution will require experimental
simulations using cultural traits with multiple continuous and
discrete attributes and multimodal adaptive landscapes, as is
possible with the virtual arrowhead task. Future studies
might systematically vary aspects of the multimodal fitness
environment, such as the number of peaks, the difference in
height of the different peaks, or non-linear fitness relation-
ships between attributes.

6.2. Periodic cultural learning performs just as well as
terminal cultural learning

It was predicted that periodic cultural learning, where
cultural learning is possible at regular intervals throughout
the experiment, would be less adaptive relative to individual
learning than terminal cultural learning, where cultural
learning is allowed only in the last few hunts. Terminal
cultural learning has an enforced period of individual
learning during which the fitness environment can be
effectively explored by all participants in the group, with a
greater probability that a high-fitness peak is found. Periodic
cultural learning, on the other hand, does not have this
extended period of individual learning. Information scroun-
gers who always engage in cultural learning can potentially
free-ride on the individual learning of others throughout the
entire season, resulting in fewer individuals exploring the
fitness environment and lower group fitness.

While results from Season 1 supported this hypothesis to
some degree, results from Season 2 did not. The latter might
be considered more representative of our participants’ actual
decision-making given that during Season 1 participants may
have been learning how to play the game rather than how to
use the available information effectively. In Season 2,
periodic cultural learners significantly outperformed indivi-
dual controls and achieved comparable performance as
terminal cultural learners. It was argued that this was because
participants did not separate into pure individual learners
(information producers) and pure cultural learners (informa-
tion scroungers) as expected. Instead, they flexibly switched
between individual learning (when they were performing
well) and cultural learning (when they were performing
poorly), therefore following a “copy-successful-individuals-
when-behaviour-is-unproductive” cultural learning strategy.
This replicates an analytical finding of Boyd and Richerson
(1995) and an experimental finding of Kameda and
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Nakanishi (2003) that populations of flexible learners
outperform both populations of pure individual learners
and mixed populations of pure individual learners and pure
cultural learners. The fact that this was observed in both
Kameda and Nakanishi’s study and the present study despite
differences in task, participants, and cultural learning
strategies suggests that flexible switching between cultural
and individual learning may be a general and adaptive
feature of human cognition, as suggested by Boyd and
Richerson’s model.

6.3. Informational access costs significantly reduced the use
of cultural learning

During Season 3 cultural learners could set access costs
that other participants had to pay to view their designs.
Successful participants tended to set very high access costs
and prevented other group members from copying their
designs, significantly reducing the frequency of cultural
learning and especially the copy-successful-individuals
strategy. Consequently, Season 3 access-cost-cultural-lear-
ners effectively became individual learners and performed no
better than actual Season 3 individual controls, and
significantly worse than Season 2 cultural learners who
could not set access costs.

There was no evidence for the alternative prediction that
successful players might set access costs that are high
enough to tempt several other players to buy their
information, thus increasing both the successful player’s
score (via the multiple fees received) and the other players’
scores (via the better quality information). This secondary
prediction was somewhat informal, however, and formal
game theoretic analyses are needed to identify equilibrium
access costs and access frequencies. Perhaps if the experi-
ment were extended over further seasons of hunting, then
market dynamics would converge on equilibria featuring
more modest access costs. On the other hand, perhaps the
successful participants here were behaving optimally in
blocking all cultural learning because the lack of environ-
mental change meant that successful participants could
protect their advantage knowing that their valuable informa-
tion will remain valuable in the future. In contrast,
fluctuating environments would mean that the valuable
information possessed by successful players might not
remain valuable in the future, providing an incentive to sell
it before it becomes outdated. Extending the number of trials
and introducing environmental fluctuation might therefore
generate fluctuating and unpredictable information markets.
We might also, under these alternative conditions, observe a
form of indirect bias (Boyd & Richerson, 1985) in which a
participant mistakenly buys information from a less
successful model. This less successful model’s score would
increase due to the fee received, which would erroneously
signal to other participants that this model’s information is
worth buying. The other participants would buy the model’s
information, further increasing the model’s score, thus

generating a maladaptive information cascade. Finally,
altering the task motivation from individuals competing
against one another to a more cooperative situation might
also affect access costs. For example, having separate groups
of participants compete against one another might result in
low access costs for in-group participants and high access
costs for out-group participants. Hence, cultural learning
would occur predominantly within groups, generating low
within-group variation and high between-group variation
and therefore providing the preconditions for cultural group
selection (Richerson & Boyd, 2005).

The ability to set access costs is probably a more realistic
assumption and better reflects actual cultural transmission
than allowing free access to information. Ethnographic
evidence suggests that successful individuals in traditional
societies are paid in deference or material goods for access to
their expert knowledge (Henrich & Gil White, 2001). Similar
phenomena occur in industrial societies; for example,
successful lawyers set higher prices for access to their
legal knowledge than do less successful lawyers. These cases
suggest that real-life access costs are not so high as to block
all cultural learning, as was found here, although as noted
above there are likely to be many differences between real
situations and the experimental task (e.g., environmental
fluctuation). Future field studies might attempt to quantify
these naturally occurring access costs and the conditions
under which they occur, providing data that could inform
future experiments.

6.4. Cumulative cultural evolution

As well as allowing tests of the adaptiveness of specific
cultural learning strategies, the virtual arrowhead task also
constitutes a simulation of cumulative cultural evolution
(Boyd & Richerson, 1996; Tomasello, Kruger, & Ratner,
1993), in which innovations or modifications from different
individuals are accumulated over successive generations.
Although many species have been shown to exhibit
geographically variable cultural traditions (e.g., Whiten
et al,, 1999), it is thought that only humans have the
capacity for cumulative culture and that it is this property that
underlies the unique complexity and diversity of human
culture (Tomasello, 1999). In the present experiment,
cultural learners pooled their individually acquired knowl-
edge to produce artifacts that were, under certain conditions,
functionally better than artifacts produced by individual
controls, indicative of cumulative cultural evolution. How-
ever, it is possible that single individuals could, if they were
lucky and skilful, find the globally optimal arrowhead design
that gives the maximum 1000 calories. Future studies using
the virtual arrowhead task might simulate the more stringent
definition of cumulative cultural evolution in which the
accumulated product of several individuals could not have
been invented by a single individual alone, which is typical
of most modern technology in industrial societies, such as
cars or computers, and probably much of the technology of
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pre-industrial societies also (Henrich, 2008). For example,
different participants or groups might be asked to combine
separate artifacts (e.g., bows, arrows) to create a compound
artifact (e.g., the bow and arrow) similar to the experimental
simulations of Insko et al. (1983) of intergroup production
and trade. Finally, adapting these cultural evolution experi-
ments for use with non-human species, along the lines of
recent cultural transmission experiments with chimpanzees
(e.g., Whiten, Horner, & de Waal, 2005), and comparing the
results with those seen for human participants might reveal
the cognitive capacities that underlie cumulative culture.

6.5. Wider implications

In the real world, many individuals and organisations face
problems similar to those faced by the participants in this
experiment, i.e., whether to engage in costly trial-and-error
learning or whether instead to adopt the practices of another
individual or organisation. If the latter, then the question
becomes who to copy (the most successful, the majority, etc.)
and when to copy (when performing poorly, when uncertain,
etc.). For example, businesses can either innovate by
engaging in costly research and development or they can
copy the practices of other more successful businesses.
Governments can experiment with their policies or they can
copy the successful policies of other governments. Con-
sumers can personally test every available brand or they can
buy the most popular brand. Each of these examples describe
a different cultural learning strategy (copy successful
individuals, copy successful behaviours, and copy the
majority, respectively), each of which is likely to have
different long- and short-term consequences for profits,
welfare, happiness, etc. Cultural evolution experiments are
useful in telling us not only what individuals should do in
such situations, but also what people actually do. The present
study suggests that a cultural learning strategy that intuitively
seems effective—preferentially copying successful indivi-
duals—is only effective when environments have multiple
optima of varying fitness and is only employed when access
to others’ information is free. And while some theoretical
models suggest that cultural learning would be hampered by
the emergence of free-riding information scroungers, the
present study suggests that people avoid this by flexibly
switching between individual and cultural learning, only
copying others when they are doing poorly. Future
mathematical models, experiments, and field studies will
no doubt offer many more insights into processes of cultural
evolution, both scientific insights into how people behave
under different circumstances and practical insights into how
individuals, businesses, and governments can improve their
decision-making.
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Appendix A. Fitness equations

The fitness of an arrowhead, W (0<W<1000), was
determined by the participant’s entered attribute values of
length, width, thickness, and shape (a fifth attribute, color,
had no effect on fitness), according to Eq. (1):

W =1000(0.275 Wy +0.25 Wy + 0.35 Wr + 0.125 Ws)
(1)

where Wi, Wy, W, and Wy are the individual fitness
contributions of length, width, thickness, and shape,
respectively, each ranging from 0 to 1. Hence, these attributes
are differentially weighted in descending order of importance
of thickness, length, width, and shape. Participants received
feedback based only on the single number, /7, and were not
informed of separate fitness contributions of the attributes.
The three continuous attributes, length, width, and thickness,
each had bimodal fitness functions (Fig. 1B) comprising two
overlapping normal distributions with means O; and O,,
representing the global optimum and local optimum,
respectively. The global optimum gave the maximum fitness
contribution of the attribute (e.g., Wy=1), while the local
optimum gave two-thirds that value (e.g., W1=0.66). Each
attribute had different optima, e.g., for length, O ; and O ,,
for width Oy, and Oy, and so on. The fitness contribution
from each of these optima (using length as an example), W7 ;
and W} ,, were given by Egs. (2) and (3):

Wii(Xi, O11) = Py exp| ~(X./100 = 011 /100)*/(20)] (2)

Wia(Xe, Ora) = Py exp {—(XL/100 — 012/100) /(20)} (3)

where X is the participant’s entered value of length, P, and
P, are the maximum fitness contributions of the two optima
(P1=1, P,=0.66), and o is the standard deviation of the
normal distribution (6=0.025). The overall fitness contribu-
tion of length, W}, was the greater of the two values W} ; and
Wy , according to Eq. (4):

W af Wo> W,
o= { Wio if Wia>Wiy “)

Equivalent expressions for the fitness contributions of
width and thickness are obtained by substituting different
subscripts. The fitness contribution of shape was determined
by ranking each of the four discrete shapes (Shape 1, Shape
2, Shape 3, and Shape 4) into a predetermined random order,
with the highest ranked value giving a fitness contribution of
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Ws=1, the second Ws=0.9, the third Ws=0.66 and the last
W4=0.33. The actual feedback shown to participants, W',
was calculated by adding random error to . Hence, W’ was
drawn randomly from a normal distribution with mean W
and standard deviation &, where ¢=5. Individual controls in
Season 1 experienced unimodal fitness functions, where
fitness was given by a single normal distribution [i.e., Eqs.
(1) and (2) only, ignoring Egs. (3) and (4)].

Appendix B. Calculation of social influence, s

To obtain the measure of social influence, s, two
quantities were calculated for each continuous attribute.
First, the absolute difference between the viewer’s attribute
value and the model’s attribute value immediately before
cultural learning, representing deviation from the model
before cultural learning. Second, the absolute difference
between the viewer’s value after cultural learning and the
model’s value before cultural learning (which was the value
that was seen by the viewer), representing deviation from the
model after cultural learning. The second difference was
subtracted from the first difference, giving the degree to
which the deviation between viewer and model decreased as
a result of cultural learning. This measure was calculated
separately for each of the three continuous attributes, and
these three values were summed to give the overall social
influence, s. Because they were not represented on
continuous scales and were not modified as frequently as
the continuous attributes, shape and color were not used to
calculate s. The within-participant consistency of s was
calculated as follows (based on Kameda & Nakanishi, 2002,
pp. 384-385). First, s was categorised according to its sign:
positive, zero, or negative. Then, for each participant (and
separately for each season), the number of times that the
participant kept the same sign of s in consecutive cultural
learning hunts was counted. For example, if a participant had
values of s 0f 22, 0, —12, 11, and 18 for Hunts 6, 11, 16, 21,
and 26, respectively, then they would get a consistency score
of 1 (for the final two hunts of consecutive positive s values).
The consistency index therefore ranged from 0 (entirely
inconsistent, e.g., s={—6, 0, 23, 0, 7}) to 4 (entirely
consistent, e.g., s={0, 0, 0, 0, 0} or s={21, 8§, 16, 33, 5}).

Appendix C. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.evolhumbehav.
2008.04.005.
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