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Abstract

Analytical models have identified a set of social learning strategies that are predicted to be adaptive relative to individual (asocial) learning.
In the present study, human participants engaged in an ecologically valid artifact-design task with the opportunity to engage in a range of social
learning strategies: payoff bias, conformity, averaging and random copying. The artifact (an arrowhead) was composed of multiple continuous
and discrete attributes which jointly generated a complex multimodal adaptive landscape that likely reflects actual cultural fitness
environments. Participants exhibited a mix of individual learning and payoff-biased social learning, with negligible frequencies of the other
social learning strategies. This preference for payoff-biased social learning was evident from the initial trials, suggesting that participants came
into the study with an intrinsic preference for this strategy. There was also a small but significant increase in the frequency of payoff-biased
social learning over sessions, suggesting that strategy choice may itself be subject to learning. Frequency of payoff-biased social learning
predicted both absolute and relative success in the task, especially in a multimodal (rather than unimodal) fitness environment. This effect was
driven by a minority of hardcore social learners who copied the best group member on more than half of trials. These hardcore social learners
were also above-average individual learners, suggesting a link between individual and social learning ability. The lower-than-expected
frequency of social learning may reflect the existence of information producer–scrounger dynamics in human populations.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

When faced with novel tasks, individuals can arrive at
adaptive solutions either via individual learning (e.g., trial-
and-error or reinforcement learning) or via social learning
(i.e., copying the solution of another individual). Social
learning is widespread in the animal kingdom (Galef &
Laland, 2005) and especially pronounced in humans
(Herrmann, Call, Hernandez-Lloreda, Hare & Tomasello,
2007; Horner & Whiten, 2005). Mathematical analyses have
found that social learning is often more likely to lead to
adaptive solutions than individual learning (Aoki, Wakano
& Feldman, 2005; Boyd & Richerson, 1985, 1988; Kameda
& Nakanishi, 2003; Rogers, 1988). This was demonstrated
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in the recent “social learning strategies tournament”
(Rendell et al., 2010), in which scholars and members of
the public submitted learning strategies that competed
against one another in an unknown and relatively complex
environment. Strategy success was significantly and posi-
tively predicted by the frequency with which that strategy
copied the choice of another strategy, underlining the
adaptiveness of social learning.

In the social learning strategies tournament, submitted
strategies were forced to copy indiscriminately, i.e., copy the
choice of a randomly selected fellow strategy. However,
theoretical analyses have shown that rather than copying
indiscriminately, it is often (even more) adaptive to follow a
specific social learning strategy (Laland, 2004). Particularly,
adaptive social learning strategies identified so far include
copying the most common solution in the group, or
“conformity” (Boyd & Richerson, 1985; Henrich & Boyd,
1998), and copying the solution of highly successful
individuals in the group, or “payoff bias” (Boyd &
Richerson, 1985; McElreath et al., 2008; Schlag, 1998).
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The adaptiveness of different social learning strategies is
seldom directly compared in such models. It is still unclear
(i) which social learning strategy (or combination of
strategies) is most adaptive in different situations, relative
both to other potential social learning strategies and to
individual learning, and (ii) which social learning strategy
(or strategies) people actually follow in different situations,
which, due to cognitive or information-processing con-
straints, may not necessarily be the most adaptive strategy
identified by formal analyses.

To address Point (ii), the predictions of theoretical
analyses have begun to be empirically tested using
laboratory experiments (Caldwell & Millen, 2008; Efferson,
Lalive, Richerson, McElreath & Lubell, 2008; Kameda &
Nakanishi, 2002, 2003; McElreath et al., 2008; McElreath
et al., 2005; Mesoudi, 2008; Mesoudi & Whiten, 2008;
Toelch et al., 2008). Regarding Point (i), the only study to
date to have directly and simultaneously compared more
than one form of social learning was conducted by
McElreath et al. (2008), who found that people tend to
copy the behaviour of other group members who had the
highest payoff (payoff bias), falling back on copying the
most common behaviour in the group (conformity) when
payoffs were tied. However, because that study was set up
to address the issue of detecting social learning in non-
human species in the wild, the task employed was rather
simple (a single dichotomous choice of planting one of two
crops in a farm) and is unlikely to be representative of many
actual instances of human social learning.

The present study aimed to address the question of which
social learning strategy (or strategies) people follow, and the
adaptiveness of these social learning strategies, in a complex
task more representative of actual human social learning and
previously verified against real-world data (see Mesoudi,
2008; Mesoudi & O'Brien, 2008a). This task involves
participants in groups designing “virtual arrowheads” via a
computer program. Like actual projectile points, virtual
arrowheads consist of multiple continuous (length, width,
thickness) and discrete (shape, colour) attributes each of
which affects overall arrowhead effectiveness according to
prespecified fitness functions (see below). Participants can
test the effectiveness of their design on a simulated “hunt”
during which they receive a payoff determined by the fitness
functions. Arrowheads can be improved (i.e., payoffs
increased) over successive hunts either via trial-and-error
individual learning or by copying the design of another
group member. A previous study using this task (Mesoudi &
O'Brien, 2008a) successfully recreated patterns of variation
documented in the archaeological record of the Great Basin
region of the southwestern United States by Bettinger and
Eerkens (1999), supporting its ecological validity.

A key aspect of the task is the complexity of the fitness
environment in which learning takes place. Each arrowhead
attribute is associated with a separate fitness function, with
these separate fitnesses summed to obtain the overall
arrowhead payoff. These fitness functions can be either
unimodal, in which case there exists a single optimal
arrowhead design located at the single optimum of each
attribute, or bimodal, in which case multiple locally optimal
designs exist of varying maximum fitness. The latter can be
conceptualised as a multimodal adaptive landscape with
each point in the landscape representing a different
arrowhead design (i.e., combination of attribute values)
and the height of the landscape representing the payoff of
that design (cf. Wright, 1932). Peaks of varying height in the
landscape represent locally optimal designs of different
maximum payoffs. Multimodal adaptive landscapes are
likely to be more representative of actual technological
evolution than simple dichotomous choices (Boyd &
Richerson, 1992; Mesoudi & O'Brien, 2008a). Specifically
pertaining to projectile points, systematic testing of replica
points demonstrates functional tradeoffs between different
demand characteristics (Cheshier & Kelly, 2006). For
example, thin and narrow points maximise penetration of
prey hides, whereas wide and thick points maximise wound
size and bleeding. These can be seen as two adaptive peaks
in the projectile point design landscape.

Previous experimental studies using the virtual arrowhead
task have partially supported the predictions outlined above
concerning the adaptiveness of social learning, showing that
payoff-biased social learning is both willingly adopted by a
majority of participants in preference to individual learning
and is more adaptive than individual learning in multimodal
adaptive landscapes (Mesoudi, 2008; Mesoudi & O'Brien,
2008a). These previous studies, however, did not allow
participants to engage in alternative social learning strate-
gies. This shortcoming is addressed in the present study. As
well as payoff-biased social learning (copying the arrowhead
design of the most successful group member) and individual
learning (directly modifying attributes without copying
anyone else) as before, participants could engage in three
additional social learning strategies that have previously
received theoretical attention. Conformity allowed partici-
pants to copy the most common arrowhead attributes across
the group (Henrich & Boyd, 1998). Averaging allowed
participants to copy the arithmetic mean of the arrowhead
attributes across the entire group, as modelled by Boyd and
Richerson (1985; p. 72) as “blending transmission”. Finally,
random copying allowed participants to copy a randomly
selected group member's arrowhead design. Random
copying is assumed in several of the aforementioned
analytical studies, as well as in the social learning strategies
tournament, as a “default” social learning strategy, although
it has been suggested by Bentley, Hahn and Shennan
(2004) to account for various real-world cultural dynamics
such as the distribution of first names, dog breeds and
pottery decorations.

A previous agent-based simulation (Mesoudi & O'Brien,
2008b) compared the adaptiveness of these four strategies
(payoff-bias, conformity, averaging and random copying) in
the virtual arrowhead task. Groups of agents, simulating
human participants, employed one of the four strategies and
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were separately compared with individual learning-only
control agents. These simulations showed that payoff bias
outcompetes the other strategies only under the assumption
of a multimodal adaptive landscape. Under this assumption,
pure individual learners get stuck on locally optimal, but
globally sub-optimal, designs. Payoff-biased social learners,
by copying high-scoring group members, can jump from
low-fitness designs to the higher-fitness design of that
successful group member. Conformity allows individuals to
converge on the most popular design, but in the absence of
payoff-related information this design is no more likely to be
the globally optimal design than one of the locally optimal
designs. Random copying similarly fails to identify the
globally optimal design, with copiers converging on a
randomly selected locally optimal design. The averaging
strategy performs particularly badly in multimodal adaptive
landscapes given that the average of two peaks in the
landscape is likely to be located in a low-fitness adaptive
valley. In a unimodal adaptive landscape, in contrast, there
was little difference between strategies, as pure individual
learners could easily find the single optimal arrowhead
design without getting stuck on sub-optimal peaks, and other
strategies subsequently copied these individual learners.

The present study featured a similar set-up to the agent-
based model of Mesoudi and O'Brien (2008b). Participants
could either learn individually or copy the design(s) of a
group of pure individual learners using one of the four
aforementioned social learning strategies. This occurred
either in a multimodal or in a unimodal adaptive landscape. It
is predicted that participants will behave adaptively by
employing the payoff-biased social learning strategy,
especially in a multimodal adaptive landscape where this
strategy is particularly adaptive. An additional, open
question is whether participants do this spontaneously from
the outset, or whether they gradually learn that this strategy is
optimal. Simulations (including that of Mesoudi & O'Brien,
2008b) typically assume, for simplicity, that strategies are
fixed, but it may be that people initially experiment with
different strategies before fixing on the most appropriate
strategy for a particular task.
2. Methods

2.1. Design

An initial group of 10 participants served as individual
learning-only “demonstrators” from whom subsequent
participants could copy arrowhead designs. Demonstrators
engaged in three seasons of hunting each comprising 30
hunts during which they could only improve their arrowhead
designs via individual (asocial, trial-and-error) learning. Five
were randomly assigned to a unimodal and five to a
multimodal fitness environment. Forty-eight different parti-
cipants (henceforth “learners”) then took part in the main
experimental session. Like the demonstrators, learners
engaged in three seasons of hunting each comprising 30
hunts and were randomly assigned to either a unimodal or a
multimodal fitness environment. Additionally, learners
could, during each hunt (except the first), (a) see their rank
(first to sixth) relative to the scores on the equivalent hunt of
the five demonstrators who experienced the same fitness
environment as they did (unimodal or multimodal), and (b)
optionally choose to copy the arrowhead design(s) of those
five demonstrators according to one of four social learning
strategies: payoff-bias, random copying, conformity or
averaging. Note that the latter was optional, and learners
could choose to ignore social information and learn
individually. Choosing one of the social learning strategies
automatically changed that learner's current arrowhead
according to that strategy and they received a payoff
associated with that copied design. All participants were
paid a base rate of £5 for taking part. In order to increase
motivation, an additional £1 was paid to learners for every
season in which they were ranked first relative to the
demonstrators at the final (30th) hunt, giving a maximum
payment of £8. Previous studies (Mesoudi 2008; Mesoudi
& O'Brien 2008a) found high intrinsic levels of motivation
in this task, so this minimal incentive mechanism was
deemed sufficient.

2.2. Materials/task

The aim of the virtual arrowhead experiment was to
design a “virtual arrowhead” and test this arrowhead design
in a “virtual hunting environment”, all via a computer
program (programmed in Borland C++ Builder 6.0; code
available upon request). Screenshots of the task are shown in
Fig. 1. Initially, and in all subsequent individual learning
trials, participants enter values for five arrowhead attributes
(Fig. 1A): length, width and thickness (continuous attributes
each ranging from 1 to 100 arbitrary units), shape and colour
(each taking one of four discrete values). Once valid values
of each attribute have been entered, participants can press a
HUNT button to receive feedback in calories, ranging from 1
to 1000. An initial practice session of 10 hunts with no
opportunity to copy, and which did not contribute to the final
payment, was performed to allow the participants to
familiarize themselves with the task. The experiment proper
was divided into three seasons each comprising 30 hunts
(trials). The stated objective was to find the optimal values of
each attribute that would give the highest possible score
(1000 calories). This score was calculated using fitness
functions (see Appendix A), although participants were told
nothing about these functions. There was also random error
in the feedback, with the score seen by participants randomly
taken from a normal distribution with a mean given by the
fitness of their arrowhead design and a standard deviation of
5 calories. Participants were informed about the presence of
random error in feedback, but not its magnitude. During each
season, the running total of all calories received during every
hunt up to that point was displayed on screen, giving a
personal cumulative score, and learners were informed how



Fig. 1. Screenshots of the experimental task, where virtual arrowheads can be improved either (A) via individual trial and error, by directly modifying the values
of height, width, thickness, shape and colour using the boxes along the top of the screen; or (B) by choosing one of four social learning strategies (payoff-bias,
conformity, averaging or random copying).
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they ranked relative to the equivalent demonstrators with
respect to this cumulative score. At the start of each season
the cumulative score was reset to 0 and the optimal values
were changed, although optimal values did not change
within each season. Participants were informed that optimal
values changed between seasons and not during seasons.

The demonstrators played all three seasons with no
opportunity to copy other participants, relying solely on
individual trial-and-error learning (see Mesoudi & O'Brien
2008b for an analysis and simulation of the individual
learning strategy employed by participants in this task). The
learners could, during every hunt, optionally choose to copy
the arrowhead design(s) of the demonstrators on the
equivalent hunt according to one of four social learning
strategies (Fig. 1B): (i) payoff-bias (described to participants
as “Copy the values of the highest-scoring player in the
group”), (ii) random copying (“Copy the values of a
randomly selected player in the group”), (iii) conformity
(“Copy the most popular values in the entire group”) or (iv)
averaging (“Copy the average values for the entire group”).
If one of these was selected, then the existing arrowhead
design was replaced with the chosen design as per the
strategy, with no copying error. Learners had no foreknowl-
edge of how effective a copied design would be before
choosing a particular strategy (otherwise every strategy
would effectively constitute a payoff-bias strategy). The
payoff-bias strategy used players' cumulative season scores
to determine the highest-scoring player, rather than scores on
the immediately preceding hunt. The conformity and
averaging strategies considered each attribute separately.
For conformity, the continuous attributes (length, width,
thickness) were divided into 10-unit intervals (1–10, 11–20,
21–30, etc.) and the mid-point of the most common interval
across the five models was calculated. The most common
values of the discrete attributes (shape and colour) were also
calculated. Ties between two or more equally-most-common
attributes were chosen from at random. For averaging, the
arithmetic means of the continuous attributes across the
group of five models were calculated. The discrete attributes
were not modified by the averaging strategy because discrete
values cannot be averaged. These methods of implementing
the strategies were explained to the learners during the
experiment via on-screen instructions.

2.3. Participants

Fifty-eight undergraduate students (43 female, mean age
20.43 years) from Queen Mary University of London
participated for payment of between £5 and £8 (depending
on performance, see above) and in some cases additional
course credit. Ten of these served as demonstrators: five in
the unimodal condition and five in the multimodal condition.
The other 48 served as learners who had the opportunity to
engage in the various forms of social learning: 24 in the
unimodal condition and 24 in the multimodal condition.

2.4. Procedure

Because the design did not require entire groups to be
present together, participants were run separately. Each
participant sat at a computer and completed the experiment
entirely via the on-screen interface. Participants were
randomly allocated to unimodal or multimodal fitness
environments. Participants were instructed not to talk or
communicate with each other except via the computer
program and not to write anything down. The entire study
lasted 45–60 min. Informed consent was obtained from all
participants and the study was approved by the Queen Mary
University of London Research Ethics Committee.
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2.5. Analysis

Nonparametric tests were conducted on the frequencies
with which participants chose different strategies. Stepwise
multiple regression analyses were performed with either
score or rank as the dependent variable and strategy
frequency (individual learning, payoff-bias, random copy-
ing, conformity and averaging) and fitness environment
(unimodal or multimodal) as predictors.
3. Results

3.1. Learning strategy choices

Overall, the learners exhibited a mix of individual
learning and payoff-biased social learning, with negligible
amounts of the other social learning strategies. Table 1
shows the frequencies with which the 48 learners (i.e.,
excluding demonstrators) chose the different individual and
social learning strategies over the three seasons of hunting.
Overall, individual learning was the most common, chosen
on 77.5% of hunts. Payoff-biased social learning was chosen
on 18.8% of hunts, with negligible (approx. 1%) amounts of
other strategies. Wilcoxon signed rank tests were used to
compare the frequency of each strategy assuming a
Bonferroni-corrected significance level of pb.005 (given
10 comparisons) and showed that individual learning was
chosen significantly more often than payoff bias (z=−4.92,
pb.001), random copying (z=−6.03, pb.001), conformity
(z=−5.97, pb.001) and averaging (z=−6.03, pb.001). Simi-
larly, payoff bias was chosen significantly more often than
random copying (z=−5.67, pb.001), conformity (z=−5.56,
pb.001) and averaging (z=−5.70, pb.001). Random copying,
conformity and averaging did not significantly differ from
one another.

Table 1 also shows an increase in the frequency of payoff-
biased social learning from Season 1 (15.9% of hunts) to
Season 2 (18.8%) to Season 3 (21.6%). Page's trend test
(Page, 1963) for three repeated measures conditions showed
this increase to be significant (L=601, k=3, n=48, pb.01).
There was also a corresponding drop in the frequency of
individual learning from Seasons 1 and 2 (78.5% and 78.9%)
to Season 3 (75.2%), although this trend did not reach
Table 1
Percentage of hunts on which participants (excluding demonstrators) chose
different learning strategies across three seasons of hunting (±S.E.)

Strategy Individual
learning

Payoff bias Random
copying

Conformity Averaging

Season 1 78.5 (±3.5) 15.9 (±3.0) 0.7 (±0.3) 2.1 (±0.5) 2.9 (±1.3)
Season 2 78.9 (±4.2) 18.8 (±4.3) 0.7 (±0.5) 0.9 (±0.3) 0.7 (±0.3)
Season 3 75.2 (±4.5) 21.6 (±4.4) 1.4 (±0.8) 1.0 (±0.3) 0.7 (±0.4)

Total 77.5 (±3.8) 18.8 (±3.7) 1.0 (±0.4) 1.3 (±0.3) 1.4 (±0.6)

Individual learning and payoff bias significantly differed in frequency from
each other strategy; random copying, conformity and averaging did not
differ from one another.
significance (L=592, k=3, n=48, pN.05). No significant
trends were found for random copying (L=572, k=3, n=48,
pN.05), conformity (L=589, k=3, n=48, pN.05) or averaging
(L=587, k=3, n=48, pN.05).

3.2. Payoff differences between strategies

Multiple linear regression analysis was used to predict
learners' success on the task, as measured by both
cumulative score after all 30 hunts averaged across all
three seasons, and final rank (1 to 6, with 1 indicating the top
rank) relative to the demonstrators again averaged across
all three seasons. Averaging these measures across seasons
was justified by significant correlations between the three
seasons in score (S1 vs. S2: r=0.69, pb.001; S1 vs. S3:
r=0.52, pb.001; S2 vs. S3: r=0.60, pb.001) and rank (S1 vs.
S2: rs=0.62, pb.001; S1 vs. S3: rs=0.64, pb.001; S2 vs. S3:
rs=0.67, pb.001). Predictors were the frequency of each
learning strategy (individual learning, payoff-bias, random
copying, conformity and averaging) as well as fitness
environment (unimodal or multimodal). Variables were
entered and removed in stepwise manner. For score, only
frequency of payoff-biased social learning remained as a
significant predictor (adj. R2=0.10, β=0.34, t=2.45, pb.02)
with all other predictors removed due to non-significance at
pb.05. The relationship between payoff-bias frequency and
score is shown in Fig. 2A. For rank, two predictors were
significant (adj. R2=0.36): frequency of payoff-bias (β=
−0.28, t=−2.39, pb.03) and fitness environment (β=−0.50,
t=−4.19, pb.001). Participants in the multimodal fitness
environment had higher mean ranks than participants in the
unimodal fitness environment. The relationship between
payoff-bias frequency and rank is shown in Fig. 2B.

Inspection of Fig. 2 suggests that the significant
relationship between payoff bias frequency and score/rank
was driven by six high-scoring and high-ranking learners
who had particularly high frequencies of payoff-biased
social learning, each of whom chose to copy the best group
member on more than half of the 29 social learning
opportunities. The pre-Season 1 practice session, during
which learners engaged in 10 hunts with no opportunity for
social learning, gives an opportunity to see whether these six
hardcore social learners were also better at individual
learning, as suggested by Reader and Laland's (2002)
finding that innovation and social learning are linked across
species. Although limited by the small and unequal sample
size, these six hardcore social learners did indeed have
significantly higher cumulative scores during the 10 practice
hunts (mean=7138) than the other 42 learners (mean=5684;
t(46)=2.15, pb.04).

3.3. Effect of fitness environment

The regression analyses above show that rank, but not
score, was significantly predicted by fitness environment:
learners in a multimodal environment had higher ranks than
learners in a unimodal environment. This is because rank
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(but not score) was calculated relative to the group of asocial
demonstrators. Multimodal demonstrators got stuck on
locally optimal but globally suboptimal peaks in the
multimodal landscape, thereby reducing their mean score.
Multimodal learners, on the other hand, could escape their
sub-optimal peaks by copying the designs of the highest-
scoring group member who had located a higher-fitness
peak. Unimodal demonstrators could easily locate the single
peak in the landscape, allowing them to perform just as well
as the unimodal learners. This scenario is supported by a
direct comparison of scores for the different groups (Fig. 3).
Participants (demonstrators and learners combined) in the
unimodal environment started off at Hunt 1 with a
significantly lower score than participants in the multimodal
F
se
L
U
E

environment (UM mean=407, MM mean=550; t(56)=5.78,
pb.001) because the latter were more likely purely by chance
to find themselves on one of the locally optimal fitness
peaks, whereas unimodal participants were less likely to find
themselves on the single peak in their fitness environment.
By the final hunt, however, this was reversed and unimodal
participants had a significantly higher mean score (UM=871,
MM=788; t(56)=3.23, pb.002). This is because multimodal
participants get stuck on globally suboptimal fitness peaks,
whereas unimodal participants all eventually converge on the
single peak in their fitness landscape. The opportunity for
social learning reduced this handicap of multimodal
environments, as indicated by significantly higher final
scores for multimodal learners (mean=801) than multimodal
demonstrators (mean=724; t(27)=2.26, pb.04). This latter
difference was only marginally significant, possibly because
not all of the learners learned socially (see Fig. 2). In
contrast, there was no significant advantage of social
learning for unimodal groups as indicated by the final
score (UM demonstrators=924, UM learners=859; t(27)=
1.15, pb.26). Finally, although there was a higher frequency
of payoff-biased social learning in multimodal learners
(mean=22.4%) than in unimodal learners (mean=15.2%),
this difference was not significant according to a Mann–
Whitney test (z=−0.69, n1=n2=24, pb.49).
4. Discussion

The aim of this study was to assess people's choices of
learning strategy while engaged in a relatively complex and
ecologically valid learning task. This task involved design-
ing an arrowhead composed of multiple continuous and
discrete attributes, with these attributes forming either a

image of Fig. 2
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unimodal (single optimal arrowhead design) or a multimodal
(multiple locally optimal arrowhead designs of varying
maximum payoffs) fitness environment. An agent-based
simulation analysis of this task (Mesoudi & O'Brien, 2008b)
predicted that participants should engage in payoff-biased
social learning (copying the design of the most successful
group member) in preference to the other strategies
(conformity, averaging, random copying, plus individual
learning) especially in the multimodal fitness environment,
as payoff bias allows learners to avoid getting stuck on sub-
optimal peaks.

These predictions were partially supported. Participants
exhibited a mix of individual learning and payoff-biased
social learning, with negligible amounts of the other social
learning strategies (conformity, averaging and random
copying). The frequency of payoff bias was significantly
associated with both absolute (score) and relative (rank)
measures of success in the task. However, this effect was
driven mainly by a small minority (12.5%) of learners who
engaged in very high levels of payoff-biased social learning,
with the rest of the learners engaging predominantly in
individual learning. The shape of the adaptive landscape
determined the success of payoff-biased social learning
relative to asocial-learning-only demonstrators (as measured
by rank): payoff-biased social learners only outperformed
asocial demonstrators in the multimodal fitness environment
because payoff bias allowed learners to escape low-fitness
peaks; in unimodal fitness environments there was no
advantage to social learning, because asocial demonstrators
could easily find the single adaptive peak. However, this
advantage did not influence the frequency of social learning:
learners in multimodal environments were no more likely to
engage in social learning (relative to individual learning)
than learners in unimodal environments.

The finding that only a minority of learners consistently
engaged in payoff-biased social learning (or social learning
of any kind) replicates previous experimental findings
related to conformity (Efferson et al., 2008; McElreath
et al., 2005). Interestingly, the hardcore social learners in the
present study were also better individual learners as assessed
in a preliminary practice session, providing tentative within-
species support for Reader and Laland's (2002) finding that
social and individual learning abilities are linked across
species. So rather than social learners falling back on a
copying strategy in response to their poor individual learning
ability, it seems that social learners were better learners in
general. Whether this is, in turn, related to general cognitive
abilities such as g remains a question for future research.
Nevertheless, the finding that the majority of participants fail
to learn socially, despite the adaptiveness of social learning
in the task employed here, requires explanation. It may be
that human populations constitute a mixed equilibrium
comprising both information producers (i.e., individual
learners) and information scroungers (i.e., social learners),
as predicted by theoretical analyses (Barnard & Sibly, 1981;
Giraldeau, Valone & Templeton, 2002; Rogers, 1988) and
found in some experimental tasks (Kameda & Nakanishi,
2002, 2003), in which the lower costs of social learning are
balanced by the need to track non-stationary environments
via individual learning. Although individual learning was
suboptimal in the experimental task employed here,
participants may nevertheless be following an individual
learning strategy because it is adaptive in their everyday
lives. Further experiments employing non-stationary envir-
onments (e.g., peaks that move around in the adaptive
landscape) and field studies of people's everyday learning
behavior could address these issues. Broader cross-cultural
differences may also be relevant here. Westerners, and
particularly Western college students, tend to be highly
individualistic relative to non-Westerners and non-college
students (Henrich, Heine & Norenzayan, 2010), possibly
explaining our Western college student participants' over-
reliance on individual learning. Replications in non-Western
populations may reveal higher levels of social learning.

Payoff-biased social learning was by far the most frequent
social learning strategy from the very first hunt, dwarfing the
frequencies of conformity, averaging and random copying.
This indicates that payoff bias is intuitively appealing as
a social learning strategy, replicating the findings of
McElreath et al. (2008) and the predictions of previous
simulations that payoff bias is uniquely adaptive in this
specific task (Mesoudi & O'Brien, 2008b). This preference
for payoff bias over other social learning strategies might
be a product of genetic evolution and/or acquired during
development, which future developmental studies with
children might address. There was a significant trend for
the frequency of payoff bias to increase over the three
seasons, possibly indicating the flexible learning of
strategy effectiveness over time. Perhaps extending the
number of seasons/hunts would lead to increasingly higher
frequencies, even in those participants who engaged
predominantly in individual learning.

A concern with experimental tests of social learning, as
for all experiments, is their lack of external validity. While
previous experimental studies (e.g. Kameda & Nakanishi,
2002, 2003; McElreath et al., 2005) have typically used a
rather artificial and highly simplified task with a single
dichotomous choice (e.g., plant one of two kinds of crops or
locate a rabbit in one of two places), the present study used a
more complex and realistic task in which participants
designed an artifact composed of multiple continuous and
discrete attributes, with artifact fitness determined by a
complex adaptive landscape. These artifact attributes (width,
thickness, etc.) are the same as those modified by real-life
hunter–gatherer arrowhead manufacturers and measured by
archaeologists (e.g., Bettinger & Eerkens, 1999). Yet this
task still contained several strong simplifying assumptions,
particularly in the implementation of the social learning
strategies. In real life, the identity of the most successful
demonstrator may be ambiguous and determined indirectly
through markers of prestige (Henrich & Gil White, 2001),
rather than directly provided to learners as in the present
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study's implementation of payoff bias. The averaging and
conformity strategies also provided learners with direct and
accurate information about the average and most common
arrowhead design, respectively, information which in real
life would have to be calculated by the learner from often
ambiguous environmental input. In a sense, these simplifica-
tions make the underuse of social learning in the present
study all the more surprising, given that the implementation
here removed many of the ambiguities and inaccuracies of
such strategies and should have increased their use. On the
other hand, perhaps these strategies were consequently so
unfamiliar to the participants compared to how they are
implemented in real life that the participants misapplied
them. While simplified experimental tasks such as the one
employed here are useful in allowing researchers to test clear
and unambiguous theoretical predictions, future models and
experiments might increase the complexity of learning tasks
further to address these higher-order issues and further
explore the apparent mismatch between theory and data.

The multimodal adaptive landscape simulated in the
present experiment is likely to be representative of much
human cultural evolution, particularly technological evolu-
tion (Boyd & Richerson, 1992; Mesoudi & O'Brien, 2008a).
Many problems are likely to have multiple solutions of
varying payoffs, with constant uncertainty over whether the
current solution is globally or only locally optimal. Recent
studies suggest that chimpanzees find it difficult to switch
from adequate solutions to better solutions, even when those
better solutions are clearly modelled (Hrubesch, Preuschoft
& van Schaik, 2009; Marshall-Pescini & Whiten, 2008).
This “switching” has been suggested to underlie humans'
unique capacity for cumulative cultural evolution, in which
successive improvements are built up over time (Whiten,
McGuigan, Marshall-Pescini & Hopper, 2009). Payoff-
biased social learning, which appears to be spontaneously
employed by a significant minority of participants in the
present study, may be a key mechanism driving this
cumulative cultural evolution.
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Appendix A. Fitness equations

The fitness of an arrowhead, W (0≤W≤1000), was
determined by the participant's entered attribute values of
length, width, thickness and shape (a fifth attribute, colour,
had no effect on fitness), according to Eq. (1):

W = 1000 0:275 WL + 0:25 WW + 0:35 WT + 0:125 WSð Þ
ð1Þ
where WL, WW, WT and WS are the individual fitness
contributions of length, width, thickness and shape,
respectively, each ranging from 0 to 1. Hence, these
attributes are differentially weighted in descending order of
importance of thickness, length, width and shape. Partici-
pants received feedback based only on the single number,
W, and were not informed of separate fitness contributions
of the attributes. For the multimodal environment, the three
continuous attributes, length, width and thickness, each had
bimodal fitness functions comprising two overlapping
normal distributions with means O1 and O2, representing
the global optimum and local optimum, respectively. The
global optimum gave the maximum fitness contribution of
the attribute (e.g.,WL=1), while the local optimum gave two-
thirds that value (e.g.,WL=0.66). Each attribute had different
optima, e.g., for length, OL1 and OL2, for width OW1 and
OW2, and so on. The fitness contribution from each of these
optima (using length as an example), WL1 and WL2, was
given by Eqs. (2) and (3):

WL1 XL;OL1ð Þ = P1exp − XL =100−OL1 =100ð Þ2 = 2rð Þ
h i

ð2Þ

WL2 XL;OL2ð Þ = P2exp − XL =100−OL2 =100ð Þ2 = 2rð Þ
h i

ð3Þ

where XL is the participant's entered value of length, P1 and
P2 are the maximum fitness contributions of the two optima
(P1=1, P2=0.66), and σ is the standard deviation of the
normal distribution (σ=0.025). The overall fitness contribu-
tion of length, WL, is then the greater of the two values WL1

and WL2 according to Eq. (4):

WL ¼ WL1 if WL1 N WL2

WL2 if WL2 N WL1

�
ð4Þ

Equivalent expressions for the fitness contributions of
width and thickness are obtained by substituting different
subscripts. For the participants in the unimodal environment,
fitness was given by a single normal distribution [i.e., Eqs.
(1) and (2) only, ignoring Eqs. (3) and (4)]. The fitness
contribution of shape was identical for both unimodal and
multimodal participants and was determined by ranking each
of the four discrete shapes (Shape 1, Shape 2, Shape 3 and
Shape 4) into a predetermined random order, with the highest
ranked value giving a fitness contribution of WS=1, the
second WS=0.9, the third WS=0.66 and the last WS=0.33.
Finally, the actual feedback shown to participants, W′, was
calculated by adding random error to W. Hence, W′ was
drawn randomly from a normal distribution with mean W
and standard deviation ɛ, where ɛ=5.
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